首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of the stimulatory effect of glutathione on proteolysis in mouse kidney lysosomes and a lack of an effect in lysomes from the liver was investigated. The stimulation in kidney lysosomes was inhibited by serine plus borate, a reversible inhibitor of γ-glutamyl transpeptidase. Treatment of mouse kidney lysosome suspensions with l-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), an irreversible inhibitor of the transpeptidase, also inhibited the effect of glutathione, but this inhibition was completely relieved by washing and addition of freshly prepated kidney membranes or purified γ-glutamyl transpeptidase to the incubation mixtures. Cysteinyl-glycine, a product of the action of γ-glutamyl transpeptidase, stimulated proteolysis in acivicin-inhibited kidney lysosome preparations similarly to glutathione, and cysteine had no effect at equivalent concentrations. Glutathione also stimulated proteolysis in liver lysosomes in the presence of washed kidney membranes or γ-glutamyl transpeptidase, but the effect was similar to that produced by equivalent concentrations of cysteine. These results suggest that the stimulatory effect of glutathione was mediated by the action of γ-glutamyl transpeptidase present in contaminating cell membrane fragments in the lysosome preparations, and that glutathione does not take part in intralysosomal proteolysis. However, the possibility that cysteinyl-glycine is a physiological intralysosomal disulfide reductant in kidney lysosomes has not been excluded.  相似文献   

2.
γ-Glutamyl transpeptidase (EC 2.3.2.2) activity is described in the coelenterate, Hydraattenuata, using the substrate γ-glutamyl-p-nitroanilide. The properties of the γ-glutamyl donor required for binding to the transpeptidase were investigated by measuring the ability of GSH analogs to inhibit the release of p-nitroaniline. Whereas no binding was observed when the γ-glutamyl moiety was altered, analogs with substitution in the Cys residue were capable of binding to the enzyme. A specificity for the Gly residue was indicated because analogs containing Leu or Tyr in place of Gly exhibited decreased binding capacities for the hydra transpeptidase. A comparison of these data with those obtained using the same analogs in the GSH induced feeding response bioassay shows that γ-glutamyl transpeptidase activity and the GSH receptor for the hydra feeding response have different specificities.  相似文献   

3.
The experiments reported show that bovine γ-glutamyl transpeptidase can be separated from free secretory component. An ion-exchange Chromatographic procedure was developed to analyze the incubation mixtures of the enzyme with glutathione or S-(2-acetamido)-glutathione and glycylglycine. Using this system or the γ-glutamyl p-nitroanilide assay, no significant transpeptidase activity could be detected in the free secretory component-containing fractions of DEAE-cellulose chromatography. Gel filtration on Biogel A-5M showed that the bovine whey transpeptidase chromatographed in the void volume suggesting an aggregate of a minimum molecular weight of about 5 × 106. The transpeptidase could be separated from all immunoglobulins in bovine whey and human colostrum by a combination of agarose gel filtration and immunoadsorption. Concentrated samples of human and sheep saliva showed normal amounts of secretory component, but no detectable γ-glutamyl transpeptidase activity. These experiments show that (1) the transpeptidase and secretory component are two different proteins, and (2) the transpeptidase is present in bovine and human milk as a high molecular weight aggregate which does not include any of the immunoglobulins.  相似文献   

4.
γ-Glutamyl transpeptidase (EC 2.3.2.2) of rat kidney is composed of two nonidentical polypeptide chains, the small and large subunits. The active site of this enzyme has previously been shown to be located in the small subunit [Inoue, M., Horiuchi, S. &; Morino, Y. (1977) Eur, J. Biochem. 73, 335–342; Tate, S. S. &; Meister, A. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 931–935] The denaturation of this oligomeric enzyme in 6 M urea, followed by chromatography on a Sephadex G-150, resulted in the separation of the large and small subunits. The removal of urea gave rise to an enzymatically active preparation from the denatured large subunit. Under several renaturation conditions, the small subunit polypeptide chain did not exhibit the enzymatic activity. Upon incubation with 6-diazo-5-oxo-L-[1,2,3,4,5-14C]norleucine, an affinity label for γ-glutamyl transpeptidase, the renatured preparation of the large subunit was covalently labeled with the affinity label with concomitant loss of the enzymatic activity. When the native enzyme was inactivated by the 14C-affinity label, radioactivity was selectively incorporated into the small subunit. These findings indicate that the isolated large subunit possesses an active site which is masked in the native state of the enzyme.  相似文献   

5.
ENZYMES OF THE γ-GLUTAMYL CYCLE IN THE CHOROID PLEXUS AND BRAIN   总被引:4,自引:4,他引:0  
—The presence of enzymes of the γ-glutamyl cycle in the bovine and rabbit brain and choroid plexus is described. The activities of γ-glutamyl transpeptidase, γ-glutamyl cyclotransferase and γ-glutamyl-cysteine synthetase in the choroid plexus were found to be higher than in the brain. The activity of γ-glutamyl transpeptidase in the choroid plexus was many times higher than the activity of the other enzymes. Brain and choroid plexus γ-glutamyl transpeptidase were activated by Na+ and K+. Both brain and choroid plexus showed only a very limited capacity to metabolize [14C]5-oxoproline to 14CO2.  相似文献   

6.
Ascites hepatoma cell line AH-130 was tested for the ability to transport various amino acids and glutathione before and after γ-glutamyl transpeptidase of the cells was affinity-labeled and inactivated by 6-diazo-5-oxo-L-norleucine, a glutamine analog. The rate of uptake of alanine, glycine, leucine and glutamine by the cells remained unchanged after γ-glutamyl transpeptidase was inactivated by this affinity label. This indicated that γ-glutamyl transpeptidase of the cell was not involved in the transport process of these amino acids tested. The uptake of glutathione was also tested before and after affinity labeling the enzyme. The total amount of the radioactivity incorporated into the cells was not significantly affected by the enzyme inactivation. However, the relative amount of incorporated intact glutathione was found to be slightly but significantly increased after membraneous γ-glutamyl transpeptidase was inactivated by the affinity label, while that of component amino acid, glycine, was found to decrease. This indicated that glutathione was taken up by the cell in its intact form as well as in degraded forms into its component amino acids, and γ-glutamyl transpeptidase in the ascites tumor cell AH-130 seemed to be involved in the metabolic process via the latter system.  相似文献   

7.
The γ-glutamyl cycle has been proposed by Meister (1973) as one possible mechanism for the mediation of amino acid transport. The high energy requirement of the pathway, the very low specificity of γ-glutamyl transpeptidase and the inability to account for trans membrane stimulation of amino acid entry are but three criticisms of this hypothesis. It is proposed that the various objections can be overcome by postulating that the soluble form of γ-glutamyl transpeptidase transfers the γ-glutamyl moiety from gluthathione to glutamine (in the case of brain) and that the membrane sequestered form of this enzyme catalyzes the exchange of the γ-glutamyl group between γ-glutamyl glutamine and an entering neutral amino acid. The released glutamine leaves the cell. The γ-glutamyl amino acid then passes into the cytoplasm where it is acted upon by either γ-glutamyl cyclotransferase or the soluble γ-glutamyl transpeptidase which transfers the γ-glutamyl group to another molecule of glutamine. It is postulated that access to the membrane-bound enzyme is dependent on the relative lipophilia of the entering large-neutral amino acids. The available data support this mechanism. By regeneration of γ-glutamyl glutamine, a low expenditure of energy is required for the transport process. Specificity of transpeptidation is attained by the constraints of access to the membrane bound enzyme site.  相似文献   

8.
The importance of γ-glutamyl transpeptidase, the key enzyme of the γ-glutamyl cycle and of thiols for the uptake of amino acids into rat pancreatic islets was investigated. Both serine–borate, an inhibitor of γ-glutamy transpeptidase, and serine which does not inhibit this enzyme, but probabaly is a competitive inhibitor of amino acid uptake, inhibited of glutamine. The inhibitory effect of serine-borate was not greater than that of serine alone. The uptake of glutamine was not affected by either GSH (reduced glutathione) or diamide (a thiol oxidant). Niether substances affected the uptake of leucine. The results indicate that the uptake of glutamine by rat pancreatic islets is not dependent on the functioning of γ-glutamyl transpeptidase and that thiols are not important for the uptake of the amino acids glutamine and leucine.  相似文献   

9.
S S Tate  M W Dunn  A Meister 《Life sciences》1976,18(10):1145-1148
The activities of γ-glutamyl transpeptidase and other enzymes of the γ-glutamyl cycle, a series of reactions that catalyzes the synthesis and utilization of glutathione, were studied in the rabbit retina. Histochemical studies demonstrated that γ-glutamyl transpeptidase is localized in the visual receptor cells and the retinal pigment epithelium. Rat and mouse retinas revealed similar localizations of transpeptidase. These findings are in accord with the view that γ-glutamyl transpeptidase is involved in the transport of amino acids between the retinal pigment epithelium and the avascular visual receptor cells.  相似文献   

10.
Many previous studies have shown that yeast contains high concentrations of glutathione and enzymes needed for its synthesis. We report here that yeast also contains γ-glutamyl transpeptidase, γ-glutamyl cyclotransferase, dipeptidase, and 5-oxoprolinase activities, suggesting that the γ-glutamyl cycle may be operative in yeast. The presence of the cycle enzymes in yeast offers a simple free-cell system which can probably be adapted to studies on the function of this cycle.  相似文献   

11.
Metabolic acidosis results in an adaptation in renal γ-glutamyltransferase (γ-GT) and a doubling of hippurate excretion. The greater rate of γ-glutamohydroxamate, γ-GHA, formation from L-glutamine, but not from glutathione, by acidotic kidney homogenates suggest an increased γ-glutamyl-enzyme complex formation and a preference for glutamine as the γ-glutamyl donor in acidosis. Hippurate added invitro to cortical homogenates or microsomes mimics the affect of acidosis upon γ-GHA formation from glutamine. Acid extracts of urine stimulated ammonia formation from glutamine using cortical microsomes in agreement with the measured hippurate levels. Administering an exogenous hippurate load to fasting nonacidotic rats doubled ammonia excretion and the rate of γ-GHA formation by cortical homogenates. These results are consistent with the acidosis induced adaptation in renal γ-GT governed by hippurate.  相似文献   

12.
The enzyme γ-glutamyl transpeptidase was purified from seeds of immature ackee fruit (Blighia sapida; Sapindaceae) by salt fractionation and gel filtration on Biogel P-10 and P-200. The procedure, which differs from an earlier one applied to kidney bean fruit, achieves 9.8% yield and 577-fold purification. The enzyme is also present in other parts of the fruit and in leaves. A MW of 12 500 was found by SDS-polyacrylamide gel electrophoresis, a value much lower that that reported for the enzyme from kidney bean fruit. Neutral or amino sugar accounts for 10% of the dry weight. In vitro, the enzyme catalysed synthesis of an unusual γ-glutamyl dipeptide which occurs in ackee seeds, using glutathione as glutamyl group donor. The enzyme mechanism was of the double displacement (ping-pong) type.  相似文献   

13.
A direct examination of the inter-organ cycle of glutathione metabolism was made by determining glutathione levels in plasma obtained from various blood vessels of the rat. High levels of GSH were found in hepatic vein plasma, relative to arterial and systemic venous levels, reflecting translocation of GSH from the liver to the plasma. Renal vein plasma has a level that is 20% of arterial plasma indicating that the kidney removes glutathione from plasma not only by glomerular filtration (which can account for 20–30% of the glutathione removed), but also by a non-filtration mechanism. Inhibitors of γ-glutamyl transpeptidase decrease the fraction of glutathione removed by the kidney to a value approaching that filtered, indicating that the non-filtration mechanism involves γ-glutamyl transpeptidase.  相似文献   

14.
Rat kidney γ-glutamyl transpeptidase was found to be inactivated by phenylmethanesulfonyl fluoride, a specific inactivator of serine enzymes. The inactivation occurred only in the presence of maleate which was known to enhance the hydrolytic activity of this enzyme. The concentration of phenylmethanesulfonyl fluoride giving a half maximum rate of inactivation was 1.1 mM. The presence of S-methyl glutathione, a substrate for this enzyme, prevented the inactivation in a competitive fashion. These findings indicate that phenylmethanesulfonyl fluoride acts as an active site directed reagent for γ-glutamyl transpeptidase. A possible identity of the labeled site with that for 6-diazo-5-oxo-L-norleucine, another affinity label for this enzyme, was discussed.  相似文献   

15.
Bovine kidney γ-glutamyl transpeptidase, a membrane enzyme, was immobilized in gel beads by application of the method of Wallstén et al. (Biochim. Biophys. Acta, 982, 47–52, 1989). The gel beads were equilibrated with a dispersion of the enzyme, phospholipids, and cholate and subsequently dialyzed against a buffer for reconstitution and immobilization of enzyme-bound liposomes in the pores of the beads. From the standpoints of the immobilized contents of protein and phospholipids and of the reactivity of γ-glutamyl transpeptidase, a dialysis buffer of Tris-HCl (pH 7.5), a phospholipid concentration of 45 mg/ml in the enzyme-phospholipid-cholate dispersion, and the use of Sepharose CL-6B as the support gel were found to be most appropriate for the immobilization of γ-glutamyl transpeptidase, γ-Glutamyl transpeptidase was activated and stabilized by reconstitution in liposomes. In operation with a packed bed reactor, liposome-bound γ-glutamyl transpeptidase immobilized in Sepharose CL-6B exhibited relatively stable and constant activity for 12 h. In addition, it was found that enzyme substrates were able to pass through the pores of the gel beads to interact with the enzyme present on the outer surface of the liposome membrane in the gel beads. These results thus indicated that a novel support made up of liposomes and Sepharose CL-6B would permit efficient immobilization of lipid-requiring and/or membrane enzymes.  相似文献   

16.
本文应用动力学分析观察了棉酚对大鼠肾脏γ-谷氨酰转肽酶(γ-GT)的抑制作用。实验结果证实了棉酚在体外是大鼠肾脏γ-GT的抑制剂,而且抑制常数远小于r-GT的天然抑制剂——马尿酸。在不同浓度的棉酚作用下,改变双底物浓度,测定其活力并应用Lineweaver-Burk双倒数作图法,测得棉酚在两种底物情况下,对γ-GT的抑制作用均呈非竞争性抑制。  相似文献   

17.
Glutathione synthetase deficiency results in decreased cellular glutathione content and consequent overproduction of 5-oxoproline. L-serine in borate buffer inhibits γ-glutamyl transpeptidase, the major catabolic enzyme for glutathione. Treatment of glutathione synthetase deficient fibroblasts with 40mM serine and borate for 24 hours produced more than a 2-fold increase in cellular glutathione content. L-serine alone led to a smaller increase in glutathione level, and borate alone was without effect. On exposure to serine and borate, 5-oxoproline formation from L-glutamate was decreased to normal levels in glutathione synthetase deficient fibroblasts, presumably secondary to feedback inhibition of γ-glutamylcysteine synthetase by the increased intracellular glutathione concentration. Cellular free amino acid content was generally unaffected by such exposure although increases were observed in serine and phosphoserine. This model system suggests that γ-glutamyl transpeptidase inhibition may be a rational approach to alleviating the effects of glutathione synthetase deficiency.  相似文献   

18.
The exponential plasma specific activity curve 2.5 to 12.5 min after injection (sc) of [14C]tyrosine was integrated and divided by time to obtain the mathematical relationship between the average equivalent specific activity S and the measured specific activity S in any individual animal. S is the constant, average value of S that is equivalent to the curvllinearly varying quantity that the body tissues are actually exposed to. Dividing the total brain radioactivity by S gave the tissue Tyr uptake U. The function dUdt is linear from 2.5 to 12.5 min and represents the rate of uptake of the amino acid. Incorporation into protein was similarly measured. Brain uptake of Tyr averaged 7.06, and the apparent protein incorporation was 1.99 nmol/g of brain per min. The γ-glutamyl cycle inhibitor l-methionine-RS-sulfoximine reduced total brain uptake of tyrosine by 42.8% and the apparent rate of protein incorporation by 39.0%.  相似文献   

19.
L W DeLap  S Tate  A Meister 《Life sciences》1975,16(5):691-704
γ-Glutamyl transpeptidase was prepared from rat seminal vesicles by two methods and was found to be similar to rat kidney γ-glutamyl transpeptidase with respect to substrate specificity, stimulation of “glutaminase” activity by maleate, and apparent molecular weight. Histochemical studies demonstrated that γ-glutamyl transpeptidase is concentrated in the secretory epithelium of the seminal vesicle. Like the epithelium itself, the enzyme responds to the presence or absence of testosterone. The content and specific activities of γ-glutamyl transpeptidase and γ-glutamyl cyclotransferase in rat seminal vesicles are low in orchidectomized animals, an effect which is reversed by administration of testosterone but accentuated by estradiol administration. These enzymes may be involved in the secretory functions of the seminal vesicles.  相似文献   

20.
Microvessels, a mixture composed predominantly of small arterioles and capillaries (7–80μ diameter), were isolated from the rat cerebral cortex by selective nylon sieving and glass bead elutriation. The morphology and purity of the microvessel and cerebral cortex filtrate (virtually free of vascular contamination) were monitored by light microscopy and by the activity of several enzymes: γ-glutamyl transpeptidase, GSH-transferase, prostacyclin synthase and PGD synthase. Prostacyclin and PGD synthesizing activities as well as γ-glutamyl transpeptidase activity were localized to the microvessels of the rat cerebral cortex whereas GSH-S-transferase was restricted to the non-vascular filtrate function. The characteristics of the PGD synthase were similar to those of the purified enzyme previously described for the rat brain. The microvessel (MV) PGD synthase was localized to the cytosol fraction of the microvessels and did not require reduced glutathione for activity. The enzyme was inhibitd by pre-incubation with p-hydroxymercuribenzoate (lmM) or N-ethylmaleimide (lmM). The MV PGD synthase saturated at 15–20μM PGH2, exhibited an apparent KM of 9.6μM, and a pH optimum of 8.0–8.1. These findings suggest roles for both prostacyclin and PGD synthesis by the rat cerebral vasculature in the autoregulation of cerebral blood flow and/or function. These studies also indicate that the major source of PGI2 and PGD2 synthesis by rat brain homogenates is the microvasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号