共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract For a number of years we have tried to isolate versatile methylotrophic bacteria employing the ribulose monophosphate (RuMP) cycle of formaldehyde fixation. Recently this has resulted in the development of techniques for the selective enrichment and isolation in pure culture of Bacillus strains able to grow in methanol mineral medium over a temperature range between 35 and 60°C. At the optimum growth temperatures (50–55°C), these isolates display doubling times between 40 and 80 min. The metabolism of the strains studied is strictly respiratory. Methanol assimilation is exclusively via the RuMP cycle variants with the fructose bisphosphate (FBP) aldolase cleavage and transketolase (TK)/transaldolase (TA) rearrangement. Whole cells were unable to oxidize formate, and no activities of NAD-(in)dependent formaldehyde and formate dehydrogenases were detected. Formaldehyde oxidation most likely proceeds via the so-called dissimilatory RuMP cycle. The initial oxidation of methanol is catalyzed by an NAD-dependent methanol dehydrogenase present as an abundant protein in all strains. The enzyme from Bacillus sp. C1 has been purified and characterized. 相似文献
2.
Biomass production by Aspergillus fumigatus was greatest at 40–45°C and was associated with an increase in concentration of the diamine putrescine and activity of its biosynthetic enzyme ornithine decarboxylase. Concentrations of the other amines, cadaverine, spermidine and spermine were considerably lower than putrescine concentration and did not change significantly over the temperature range 20–50°C. This is surprising in view of the greatly increased flux of label from ornithine through to spermidine at 45 and 50°C, indicating an increased formation of this triamine. It is suggested that there was increased formation of spermidine derivatives at these temperatures. Interestingly, there was greatly increased formation of the higher homologues of cadaverine, aminopropylcadaverine and N,N′-bis(3-aminopropyl)cadaverine, in A. fumigatus at 45 and 50°C. 相似文献
3.
4.
Estelmann S Hügler M Eisenreich W Werner K Berg IA Ramos-Vera WH Say RF Kockelkorn D Gad'on N Fuchs G 《Journal of bacteriology》2011,193(5):1191-1200
Metallosphaera sedula (Sulfolobales, Crenarchaeota) uses the 3-hydroxypropionate/4-hydroxybutyrate cycle for autotrophic carbon fixation. In this pathway, acetyl-coenzyme A (CoA) and succinyl-CoA are the only intermediates that can be considered common to the central carbon metabolism. We addressed the question of which intermediate of the cycle most biosynthetic routes branch off. We labeled autotrophically growing cells by using 4-hydroxy[1-14C]butyrate and [1,4-13C1]succinate, respectively, as precursors for biosynthesis. The labeling patterns of protein-derived amino acids verified the operation of the proposed carbon fixation cycle, in which 4-hydroxybutyrate is converted to two molecules of acetyl-CoA. The results also showed that major biosynthetic flux does not occur via acetyl-CoA, except for the formation of building blocks that are directly derived from acetyl-CoA. Notably, acetyl-CoA is not assimilated via reductive carboxylation to pyruvate. Rather, our data suggest that the majority of anabolic precursors are derived from succinyl-CoA, which is removed from the cycle via oxidation to malate and oxaloacetate. These C4 intermediates yield pyruvate and phosphoenolpyruvate (PEP). Enzyme activities that are required for forming intermediates from succinyl-CoA were detected, including enzymes catalyzing gluconeogenesis from PEP. This study completes the picture of the central carbon metabolism in autotrophic Sulfolobales by connecting the autotrophic carbon fixation cycle to the formation of central carbon precursor metabolites.Sulfolobales (Crenarchaeota) comprise extreme thermoacidophiles from volcanic areas that grow best at a pH of around 2 and a temperature of 60 to 90°C (32, 33). Most Sulfolobales can grow chemoautotrophically on sulfur, pyrite, or H2 under microaerobic conditions, which also applies to Metallosphaera sedula (31), the organism studied here. Its genome has been sequenced (2). Some species of the Sulfolobales secondarily returned to a facultative anaerobic or even strictly anaerobic life style (33), and some laboratory strains appear to have lost their ability to grow autotrophically (8). Autotrophic representatives of the Sulfolobales use a 3-hydroxypropionate/4-hydroxybutyrate cycle (in short, hydroxypropionate/hydroxybutyrate cycle) for autotrophic carbon fixation (Fig. (Fig.1)1) (6-8, 38). The enzymes of this cycle are oxygen tolerant, which predestines the cycle for the lifestyle of the aerobic Crenarchaeota (8). The presence of genes coding for key enzymes of the hydroxypropionate/hydroxybutyrate cycle in the mesophilic aerobic “marine group I” Crenarchaeota suggests that these abundant marine archaea use a similar autotrophic carbon fixation mechanism (6, 24, 68) (for a review of autotrophic carbon fixation in Archaea, see reference 7).Open in a separate windowFIG. 1.Proposed 3-hydroxypropionate/4-hydroxybutyrate cycle functioning in autotrophic carbon fixation in Sulfolobales and its relation to the central carbon metabolism, as studied in this work for Metallosphaera sedula. The situation may be similar in other Sulfolobales and possibly in autotrophic marine Crenarchaeota. Enzymes: 1, acetyl-CoA/propionyl-CoA carboxylase; 2, malonyl-CoA reductase (NADPH); 3, malonic semialdehyde reductase (NADPH); 4, 3-hydroxypropionate-CoA ligase (AMP forming); 5, 3-hydroxypropionyl-CoA dehydratase; 6, acryloyl-CoA reductase (NADPH); 7, acetyl-CoA/propionyl-CoA carboxylase; 8, methylmalonyl-CoA epimerase; 9, methylmalonyl-CoA mutase; 10, succinyl-CoA reductase (NADPH); 11, succinic semialdehyde reductase (NADPH); 12, 4-hydroxybutyrate-CoA ligase (AMP forming); 13, 4-hydroxybutyryl-CoA dehydratase; 14 and 15, crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (NAD+); 16, acetoacetyl-CoA β-ketothiolase; 17, succinyl-CoA synthetase (ADP forming); 18, succinic semialdehyde dehydrogenase; 19, succinate dehydrogenase (natural electron acceptor unknown); 20, fumarate hydratase; 21, malate dehydrogenase; 22, malic enzyme; 23, PEP carboxykinase (GTP); 24, pyruvate:water dikinase (ATP); 25, enolase; 26, phosphoglycerate mutase; 27, phosphoglycerate kinase; 28, glyceraldehyde 3-phosphate dehydrogenase; 29, triosephosphate isomerase; 30, fructose 1,6-bisphosphate aldolase/phosphatase; 31, (si)-citrate synthase; 32, aconitase; 33, isocitrate dehydrogenase.In the cycle, one molecule of acetyl-coenzyme A (CoA) is formed from two molecules of bicarbonate. The key carboxylating enzyme is a bifunctional biotin-dependent acetyl-CoA/propionyl-CoA carboxylase (10, 11, 36, 38, 48, 49). In Bacteria and Eukarya, acetyl-CoA carboxylase catalyzes the first step in fatty acid biosynthesis. However, archaea do not contain fatty acids, and therefore acetyl-CoA carboxylase obviously plays a different metabolic role. The hydroxypropionate/hydroxybutyrate cycle can be divided into two parts. The first transforms acetyl-CoA and two bicarbonate molecules via 3-hydroxypropionate to succinyl-CoA, and the second converts succinyl-CoA via 4-hydroxybutyrate to two acetyl-CoA molecules. In brief, the product of the acetyl-CoA carboxylase reaction, malonyl-CoA, is reduced via malonic semialdehyde to 3-hydroxypropionate, which is further reductively converted to propionyl-CoA. Propionyl-CoA is carboxylated to (S)-methylmalonyl-CoA by the same carboxylase as that that carboxylates acetyl-CoA (11, 36). (S)-Methylmalonyl-CoA is isomerized to (R)-methylmalonyl-CoA, followed by carbon rearrangement to succinyl-CoA catalyzed by coenzyme B12-dependent methylmalonyl-CoA mutase.Succinyl-CoA then is converted into two molecules of acetyl-CoA via succinic semialdehyde, 4-hydroxybutyrate, 4-hydroxybutyryl-CoA, crotonyl-CoA, 3-hydroxyacetyl-CoA, and acetoacetyl-CoA. This reaction sequence apparently is common to the autotrophic Crenarchaeota, as it also is used by autotrophic Crenarchaeota of the orders Thermoproteales and Desulfurococcales, which use a dicarboxylate/4-hydroxybutyrate cycle for autotrophic carbon fixation (8, 34, 55, 56) (also see the accompanying work [57]).From the list of intermediates of the hydroxypropionate/hydroxybutyrate cycle, acetyl-CoA and succinyl-CoA are the only intermediates considered common to the central carbon metabolism. In this work, we addressed the question of which intermediate of the cycle most biosynthetic routes branch off, and we came to the conclusion that succinyl-CoA serves as the main precursor for cellular carbon. This requires one turn of the cycle to regenerate the CO2 acceptor and to generate one extra molecule of acetyl-CoA from two molecules of bicarbonate. Acetyl-CoA plus another two bicarbonate molecules are converted by an additional half turn of the cycle to succinyl-CoA. This strategy differs from that of the anaerobic pathways, in which acetyl-CoA is reductively carboxylated to pyruvate, and from there the other precursors for building blocks ultimately are derived (discussed in reference 7). 相似文献
5.
N. Arfman E. M. Watling W. Clement R. J. van Oosterwijk G. E. de Vries W. Harder M. M. Attwood L. Dijkhuizen 《Archives of microbiology》1989,152(3):280-288
The enzymology of methanol utilization in thermotolerant methylotrophic Bacillus strains was investigated. In all strains an immunologically related NAD-dependent methanol dehydrogenase was involved in the initial oxidation of methanol. In cells of Bacillus sp. C1 grown under methanol-limiting conditions this enzyme constituted a high percentage of total soluble protein. The methanol dehydrogenase from this organism was purified to homogeneity and characterized. In cell-free extracts the enzyme displayed biphasic kinetics towards methanol, with apparent K
m values of 3.8 and 166 mM. Carbon assimilation was by way of the fructose-1,6-bisphosphate aldolase cleavage and transketolase/transaldolase rearrangement variant of the RuMP cycle of formaldehyde fixation. The key enzymes of the RuMP cycle, hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), were present at very high levels of activity. Failure of whole cells to oxidize formate, and the absence of formaldehyde-and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formaldehyde via HPS. A comparison of the levels of methanol dehydrogenase and HPS in cells of Bacillus sp. C1 grown on methanol and glucose suggested that the synthesis of these enzymes is not under coordinate control.Abbreviations RuMP
ribulose monophosphate
- HPS
hexulose-6-phosphate synthase
- HPI
hexulose-6-phosphate isomerase
- MDH
methanol dehydrogenase
- ADH
acohol dehydrogenase
- PQQ
pyrroloquinoline, quinone
- DTT
dithiothreitol
- NBT
nitrobluetetrazolium
- PMS
phenazine methosulphate
- DCPIP
dichlorophenol indophenol 相似文献
6.
Heliobacteria are a group of anoxygenic phototrophs that can grow photoheterotrophically in defined minimal media on only a limited range of organic substrates as carbon sources. In this study the mechanisms which operate to assimilate carbon and the routes employed for the biosynthesis of cellular intermediates were investigated in a newHeliobacterium strain, HY-3. This was achieved using two approaches (1) by measuring the activities of key enzymes in cell-free extracts and (2) by the use of13C nuclear magnetic resonance (NMR) spectroscopy to analyze in detail the labelling pattern of amino-acids of cells grown on [13C] pyruvate and [13C] acetate.Heliobacterium strain HY-3 was unable to grow autotrophically on CO2/H2 and neither (ATP)-citrate lyase nor ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPcase) were detectable in cell-free extracts. The enzyme profile of pyruvate grown cells indicated the presence of a pyruvate:acceptor oxidoreductase at high specific activity which could convert pyruvate to acetyl-Coenzyme A. No pyridine nucleotide dependent pyruvate dehydrogenase complex activity was detected. Of the citric-acid cycle enzymes, malate dehydrogenase, fumarase, fumarate reductase and an NADP-specific isocitrate dehydrogenase were readily detectable but no aconitase or citrate synthase activity was found. However, the labelling pattern of glutamate in long-term 2-[13C] acetate incorporation experiments indicated that a mechanism exists for the conversion of carbon from acetyl-CoA into 2-oxoglutarate. A 2-oxoglutarate:acceptor oxidoreductase activity was present which was also assayable by isotope exchange, but no 2-oxoglutarate dehydrogenase complex activity could be detected. Heliobacteria appear to use a type of incomplete reductive carboxylic acid pathway for the conversion of pyruvate to 2-oxoglutarate but are unable to grow autotrophically using this metabolic route due to the absence of ATP-citrate lyase. 相似文献
7.
Balakumar Sandrasegarampillai Arasaratnam Vasanthy Balasubramaniam Kandiah 《World journal of microbiology & biotechnology》2001,17(7):739-746
The ambient temperature is a drawback in industrial ethanol production in Jaffna due to heat killing of yeast during fermentation. Thus a search was initiated for thermotolerant organisms suitable for fermentation in hot climates. The screening of the best wild-type organisms was undertaken as the first step. Thermotolerant strains were selected from environments where there are chances of organisms being exposed to high temperature. The samples were enriched and screened for thermotolerant organisms which survived at 45 °C for 15 h. Among the yeast strains selected from different sources, thermotolerant strains with the capacity to withstand 45 °C for 15 h were found in samples collected from the compost heap and distillery environments. Three colonies from the distillery environment were selected for further studies and named p1, p2 and p3. Exponential phase (18 h) cultures of p1, p2 and p3 were subjected to 15 temperature treatment cycles (at 50 °C each for 3 h) and thermally adapted strains pt1, pt2 and pt3 were obtained, showing 100, 30 and 20% viability at 50 °C for 30 min respectively. The initial round of thermal adaptation cycles increased the duration of 100% viability from 20 h (p1) to 68 h (pt1) when incubated at 40 °C. Very little benefit was obtained when pt1 was treated with u.v. and ethyl methanesulphonate. The selected strain was identified and designated as Saccharomyces cerevisiae S1. The ethanol produced from 100 g glucose l–1 by S. cerevisiae S1 was 46 g l–1 (36 h), 38 g l–1 (48 h) and 26 g l–1 (48 h) at 40, 43 and 45 °C respectively in rich nutrient medium. 相似文献
8.
9.
N. Arfman K. J. de Vries H. R. Moezelaar M. M. Attwood G. K. Robinson M. van Geel L. Dijkhuizen 《Archives of microbiology》1992,157(3):272-278
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V
max, are strongly increased in the presence of a M
r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH
NAD-dependent methanol dehydrogenase
- ADH
NAD-dependent alcohol dehydrogenase
- A1DH
CoA-linked NAD-dependent aldehyde dehydrogenase
- HPS
hexulose-6-phosphate synthase
- G6Pdh
glucose-6-phosphate dehydrogenase 相似文献
10.
11.
The maximum ethanol concentration produced from glucose in defined media at 45°C by the thermotolerant yeast Kluyveromyces marxianus IMB3 was 44 g L−1. Acclimatisation of the strain through continuous culture at ethanol concentrations up to 80 g L−1, shifted the maximum ethanol concentration at which growth was observed from 40 g L−1 to 70 g L−1. Four isolates were selected from the continuous culture, only one of which produced a significant increase in final ethanol
concentration (50 ± 0.4 g L−1), however in subsequent fermentations, following storage on nutrient agar plates, the maximum ethanol concentration was comparable
with the original isolate. The maximum specific ethanol production rates (approximately 1.5 g (gh)−1) were also comparable with the original strain except for one isolate (0.7 g (gh)−1). The specific ethanol productivity decreased with ethanol concentration; this decrease correlated linearly (rval 0.92) with
cell viability. Due to the transience of induced ethanol tolerance in the strain it was concluded that this was not a valid
method for improving final ethanol concentrations or production rates.
Received 18 July 1997/ Accepted in revised form 19 February 1998 相似文献
12.
I.A. Tsaplina A.E. Zhuravlev M.A. Egorova T.I. Bogdanov E.N. Krasil’nikova L.M. Zakharchuk T.F. Kondrat’ev 《Microbiology》2010,79(1):13-22
For cultures of moderately thermophilic chemolithotrophic bacteria Sulfobacillus sibiricus N1 and SSO, S. thermosulfidooxidans subsp. asporogenes 41, and the thermotolerant strain S. thermotolerans Kr1 grown under forced aeration and in a high medium layer without aeration, growth characteristics, substrate consumption, and exometabolite formation were compared. Sulfobacilli grown under oxygen limitation exhibited greater generation time, longer growth period, cell yield decreased by from 40 to 85% (depending on the strain), suppressed cell respiration ( demonstrated for S. sibiricus N1 ), accumulation of exometabolites (acetate and propionate) in the medium, and emergence of resting forms. For strains N1, SSO, and Kr1, oscillations of Fe(II) and Fe(III) content in the medium were revealed. For S. sibiricus N1 and S. thermotolerans Kr1, grown under hypoxia (0.07% O2 in the gas phase), coupling of substrate oxidation with Fe(III) reduction was revealed, as well as utilization of Fe(III) as an electron acceptor alternative to oxygen. The role of labile energy and constructive metabolism for survival of sulfobacilli under diverse conditions is discussed. 相似文献
13.
The genes (rhaA and rhaB) for two alpha-L-rhamnosidases of Bacillus sp. strain GL1, which assimilates a bacterial polysaccharide (gellan), were cloned from a genomic DNA library of the bacterium constructed in Escherichia coli, and the nucleotide sequences of the genes were determined. Gene rhaA (2661 bp) contained an open reading frame (ORF) encoding a protein (RhaA: 886 amino acids) with a molecular weight (MW) of 98280. Gene rhaB (2871 bp) contained an ORF encoding a protein (RhaB: 956 amino acids) with a MW of 106049. RhaA exhibited significant identity (41%) with alpha-L-rhamnosidase of Clostridium stercorarium, while RhaB showed slight homology with enzymes from other sources. An overexpression system for the two enzymes was constructed in E. coli, and the enzymes were purified and characterized. Both RhaA and RhaB were highly specific for rhamnosyl saccharides, including gellan disaccharide (rhamnosyl glucose) and naringin, and released rhamnose from substrates most efficiently at pH 6.5-7.0 and 40 degrees C. Bacillus sp. strain GL1 cells grown in a gellan medium produced only RhaB, indicating that RhaB plays a crucial role in the complete metabolism of gellan. 相似文献
14.
15.
Summary The batch fermentation kinetics of a novel thermotolerant strain of the yeast Kluveromyces marxianus were evaluated between 30°C and 48°C. The most significant effects of elevated temperature were reductions in overall biomass and ethanol yields. Decreases in the concentration of ethanol attained, and the presence of unutilized substrate suggested increased ethanol inhibition at the higher temperatures studied. 相似文献
16.
Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes 总被引:6,自引:0,他引:6
We examined which human CYP450 forms contribute to carbon tetrachloride (CCl(4)) bioactivation using hepatic microsomes, heterologously expressed enzymes, inhibitory antibodies and selective chemical inhibitors. CCl(4) metabolism was determined by measuring chloroform formation under anaerobic conditions. Pooled human microsomes metabolized CCl(4) with a K(m) of 57 microM and a V(max) of 2.3 nmol CHCl(3)/min/mg protein. Expressed CYP2E1 metabolized CCl(4) with a K(m) of 1.9 microM and a V(max) of 8.9 nmol CHCl(3)/min/nmol CYP2E1. At 17 microM CCl(4), a monoclonal CYP2E1 antibody inhibited 64, 74 and 83% of the total CCl(4) metabolism in three separate human microsomal samples, indicating that at low CCl(4) concentrations, CYP2E1 was the primary enzyme responsible for CCl(4) metabolism. At 530 microM CCl(4), anti-CYP2E1 inhibited 36, 51 and 75% of the total CCl(4) metabolism, suggesting that other CYP450s may have a significant role in CCl(4) metabolism at this concentration. Tests with expressed CYP2B6 and inhibitory CYP2B6 antibodies suggested that this form did not contribute significantly to CCl(4) metabolism. Effects of the CYP450 inhibitors alpha-naphthoflavone (CYP1A), sulfaphenazole (CYP2C9) and clotrimazole (CYP3A) were examined in the liver microsome sample that was inhibited only 36% by anti-CYP2E1 at 530 microM CCl(4). Clotrimazole inhibited CCl(4) metabolism by 23% but the other chemical inhibitors were without significant effect. Overall, these data suggest that CYP2E1 is the major human enzyme responsible for CCl(4) bioactivation at lower, environmentally relevant levels. At higher CCl(4) levels, CYP3A and possibly other CYP450 forms may contribute to CCl(4) metabolism. 相似文献
17.
T A Ga?denko M Ia Kha?kinson V I Zvenigorodski? V G Zhdanov A I Stepanov 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1987,(12):16-20
A 8.3 kb cryptic plasmid was isolated from the thermotolerant strain of Bacillus licheniformis 28KA and designated pLT83. The replicative (rep) region was localized on the plasmid map. The pLT83 plasmid labelled in vitro with an antibiotic resistance determinant is able to replicate in B. subtilis cells. The pLT83 plasmid replicates stably in B. licheniformis strain at higher temperatures (37-60 degrees C) than in B. subtilis cells (37-50 degrees C). The plasmid and its derivatives may be used as vectors for gene cloning in B. subtilis and B. licheniformis cells. 相似文献
18.
19.
Trimethylamine N-oxide (TMAO) reductase, which is anaerobically induced by TMAO, is a terminal enzyme in anaerobic electron transport inEscherichia coli. When the organism was anaerobically grown with TMAO, a marked increase in the specific activity of TMAO reductase was observed mainly in a cell membrane fraction and stopped after exhausting TMAO. On the other hand, activity was moderately increased in a soluble fraction of the cell even after exhaustion of TMAO. Immunoblot analysis with an antiserum against the TMAO reductase purified from the soluble fractions showed that the cells growing with TMAO contained only a membrane-bound enzyme, which has a molecular mass of 94 kDa, while a soluble enzyme with 92 kDa appeared in the stationary growth phase lacking TMAO. Experiments with right-side-out and inside-out vesicles of cytoplasmic membrane indicated that the membrane-bound enzyme faces the cytoplasm. The soluble enzyme was mainly found in the cytoplasm of the cell, but also at a negligible amount in the periplasm. The membrane-bound form of TMAO reductase functioning in anaerobic electron transport seems to be cleaved and released into the cytoplasm as soluble enzyme after exhaustion of TMAO. 相似文献
20.
Rhee MS Moritz BE Xie G Glavina Del Rio T Dalin E Tice H Bruce D Goodwin L Chertkov O Brettin T Han C Detter C Pitluck S Land ML Patel M Ou M Harbrucker R Ingram LO Shanmugam KT 《Standards in genomic sciences》2011,5(3):331-340
Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. 相似文献