首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shrew species have been proposed to utilize an echo‐based orientation system to obtain additional acoustic information while surveying their environments. This system has been supported by changes in vocal emission rates when shrews encounter different habitats of varying complexity, although detailed acoustic features in this system have not been reported. In this study, behavioral experiments were conducted using the long‐clawed shrew (Sorex unguiculatus) to assess this orientation system. Three experimental conditions were set, two of which contained obstacles. Short‐click, noisy, and different types of tonal calls in the audible‐to‐ultrasonic frequency range were recorded under all experimental conditions. The results indicated that shrews emit calls more frequently when they are facing obstacles or exploring the experimental environment. Shrews emitted clicks and several different types of tonal calls while exploring, and modified the use of different types of calls for varying behavior. Furthermore, shrews modified the dominant frequency and duration of squeak calls for different types of obstacles, that is, plants and acrylic barriers. The vocalizations emitted at short inter‐pulse intervals could not be observed when shrews approached these obstacles. These results are consistent with the echo‐based orientation hypothesis according to which shrews use a simple echo‐orientation system to obtain information from their surrounding environments, although further studies are needed to confirm this hypothesis.  相似文献   

2.
We isolated six microsatellite markers from the partial genomic libraries of two Sorex shrews, S. unguiculatus and S. caecutiens, and examined their allelic variation. All loci showed high allelic variation ranging from 15 to 19 alleles and all but one locus conformed to Hardy–Weinberg expectations in the species where the loci were isolated. Cross-species amplifications showed that all primers derived from S. unguiculatus were useful for S. caecutiens, while among primer sets derived from S. caecutiens only one was useful for S. unguiculatus. Accordingly, at least five microsatellite markers were useful in S. caecutiens and three in S. unguiculatus.  相似文献   

3.
微卫星标记在分子生态学中的应用及其位点的分离策略   总被引:16,自引:4,他引:16  
微卫星DNA作为一种优良的遗传标记在分子生态学领域得到了广泛应用,本文综述了其在分子种群生物学、分子环境遗传学、分子适应等研究领域中的应用情况.微卫星位点的获得是开展各项研究的前提,传统的构建微卫星文库再杂交筛选的方法工作量大、效率低,因而在实践过程中又产生了富集文库法、PIMA法、FIASCO法等新的分离策略.本文对几种微卫星位点分离技术进行介绍并对其进行分析比较,为分子生态学研究过程中微卫星位点筛选方法的选择提供参考.  相似文献   

4.
Small Crocidurinae shrews (weight <8 g) from Southeast Asia have been poorly studied to date, mainly because of the difficulty to catch them and the concomitant paucity of reference specimens available in museums. Hence their systematics is still debated, and most small Crocidura shrews from Sundaland are assigned to the monticola species complex. Here, we report a study based on a survey of shrews caught with large pitfalls set on forest floors in Peninsular Malaysia. Morphometric analyses based on 14 skull measurements showed that these shrews tend to be larger with increasing altitude, but showed otherwise no consistent variation. When compared to museum specimens of the monticola species complex sampled in the Sundaland (total: 77 specimens), the Malay shrews tend also to be larger than those living on Kalimantan (Borneo) and Sumatra. All are, however, morphologically distinct from the other species, C. maxi, found in eastern Java and on the Lesser Sundas. Molecular analyses of a subset of these small shrews and based on a mitochondrial (cytochrome b) and a nuclear gene (Apolipoprotein B) suggest that samples from the central region of Peninsular Malaysia (Bukit Rengit and Ulu Gombak) genetically differ from other Malaysian populations (by about 7% K2P distance at the cyt b gene) and are more closely related to some samples from Sumatra and Borneo. These differences did not correlate with the altitudinal variation evidenced from the morphological analysis. Reference sequences from the terra typica of monticola and maxi (both species were originally described from Java) are however needed to determine if these unexpected genetic differences warrant additional taxonomic subdivision within the Sundaland.  相似文献   

5.
6.
The mangrove salt marsh snake (Nerodia clarkii compressicauda) occupies a unique and disappearing habitat in much of coastal southern Florida. Given extensive habitat fragmentation and high predation pressure in open spaces, it seems likely that populations of N. c. compressicauda consist of isolated groups of related individuals. To assess the degree of population subdivision in this species we genotyped a total of 125 individuals from seven locations along the Florida coast at four microsatellite loci. Overall heterozygosity was moderate (57.7%) and somewhat lower than that seen in other snake species. Population subdivision was particularly pronounced with 19 of 21 sample pair-wise ΦST values significantly different from zero and ranging from 0.064 to 0.343 (P ≤ 0.05). About 11 of 39 alleles were private alleles that also tended to be in high frequency in the populations where they occurred (average frequency ~27%). The correlation of genetic and geographic distances was highly significant and positive (r 2 = 0.8733 and P < 0.001) with ΦST increasing by ~0.01 for every 10 km of separation. Overall, salt marsh snake populations appear to be fractured into isolated neighborhoods on the order of 50–80 km. In spite of its apparent local abundance, we believe that N. c. compressicauda is in need of conservation protection. The combination of extremely low dispersal, narrow habitat requirements, and most importantly, extensive habitat alteration resulting from coastal real estate development may mean that N. c. compressicauda is highly susceptible to population extirpation and potentially extinction.  相似文献   

7.
Octopus minor (Sasaki, 1920) is a commercially important cephalopod in Chinese waters. To provide a theoretical basis for resource protection and sustainable management, we investigated genetic structure of ten O. minor populations in Chinese waters using microsatellite DNA markers. Eight microsatellite loci revealed high allelic diversity with 11–26 alleles per locus. Observed and expected heterozygosity varied from 0.412 to 0.900 and from 0.337 to 0.845, respectively. The overall FST value was 0.198, indicating great genetic differentiation among populations. The FST value between Yilan and other populations reached more than 0.3 that may be indicative of subspecies rank. Mantel test showed significant correlations between genetic and geographic distance (R = 0.383, P = 0.004) indicating that genetic differentiation of O. minor conformed to a pattern of isolation-by-distance. Using the Neighbor-joining method, cluster analysis divided nine populations into three groups and divided ten populations into two groups wherein Yilan was distinguished from the other populations. Analysis based on FST, Dc values and clustering highlighted the heterogeneity of Yilan and the relative homogeneity between Yilan and Ganyu. The significant population genetic structure of O. minor is related to the combined effects of geographical barriers, current features and life history characteristics.  相似文献   

8.
Camel invokes fascinating chapter of Indian desert history and is integral component of its ecosystem. Camel population has reached a crisis point after three decades of decline (75%) causing major concern to the policy makers. >28% of Indian camel is not yet characterized. It is imperative to describe country’s camel germplasm and its existing diversity for designing conservation plan. One such population is Sindhi, distributed along border with Pakistan. Twenty five microsatellite markers being valuable tool for estimating genetic diversity were selected to elucidate genetic variability and relationship of Sindhi with two registered camel breeds of India- Marwari and Kharai. The standard metrics of genomic diversity detected moderate variability in all the three populations. A total of 303 alleles with a mean of 8.116 ± 0.587 alleles per locus were found in total of 143 animals. Sindhi population had intermediate allelic diversity with 8.522 ± 1.063 alleles per locus. Corresponding values in Marwari and Kharai were 8.783 ± 0.962 and 7.043 ± 1.030, respectively. Genetic variability within the breeds was moderate as evidenced by the mean observed heterozygosity of 0.556 ± 0.025. Sindhi camel population harbors higher genetic variability (Ho = 0.594) as compared to the two registered camel breeds (Marwari, 0.543 and Kharai, 0.531). Mean expected heterozygosity under Hardy-Weinberg equilibrium was higher than the observed values across the three camel groups, indicating deviations from assumptions of this model. In fact, average positive F value of 0.084 to 0.206 reflected heterozygote deficiency in these populations. These Indian camel populations have not experienced serious demographic bottlenecks in the recent past. Differences among populations were medium and accounted for 7.3% of total genetic variability. Distinctness of three camel populations was supported by all the approaches utilized to study genetic relationships such as genetic distances, phylogenetic relationship, correspondence analysis, clustering method based on Bayesian approach and individual assignment. Sindhi camel population was clearly separated from two registered breeds of Indian camel. Results conclude Sindhi to be a separate genepool. Moderate genetic diversity provides an optimistic viewpoint for the survival of severely declining indigenous camel populations with appropriate planning strategies for conserving the existing genetic variation and to avoid any escalation of inbreeding.  相似文献   

9.
《Journal of Asia》2020,23(3):781-790
The silver stripped skipper, Leptalina unicolor, is listed as an endangered species with a paucity of leftover populations in Korea. Prior population genetic analysis is essential for the establishment of effective conservation strategies. In the present study, we investigated the genetic diversity and the relationships of L. unicolor populations in Korea using 12 newly developed L. unicolor-specific microsatellite markers and two mitochondrial DNA (mtDNA) sequences (a total of 1283 bp from COI and CytB). Due to the endangered status and rarity, a total of 33 individuals from two localities in Gangwon-do Province (Seohwa and Girin) and one in Gyeongsangnam-do Province (Danjang) were sampled. The concatenated mtDNA sequences revealed very low genetic diversity in each population, with only one to three independent haplotypes per population. FST, principal coordinate analysis, and independent structural analysis of the concatenated mtDNA sequences and the 12 microsatellite loci developed in this study showed that each L. unicolor population in Korea is nearly completely isolated, although inbreeding has not yet occurred. Long-term conservation habitat recovery that increases the available population appears to be important in the prevention of genetic drift and inbreeding, which occur in small isolated populations and reduce the viability of populations under fluctuating environmental conditions.  相似文献   

10.
There are about 60 species of shrews of the genus Sorex distributed over the Nearctic and Palaearctic regions; these are usually divided into the subgenera Sorex, Otisorex and Microsorex . The Old World species are listed and their phylogeny discussed, with special emphasis laid on the karyotypes. It is proposed that the Old World forms should be divided into the subgenera Homalurus, Sorex and Otisorex . It is also suggested that the subgenus Sorex could be divided into at least three taxonomic units.  相似文献   

11.
The objective of this study was to isolate microsatellite loci to analyze the genetic diversity of Whitmania pigra. Four new microsatellite markers of W. pigra were developed from an enriched library and ten from a modified SAMPL assay. A total of 127 alleles were detected, with an average of 9.1 alleles per locus. The expected heterozygosity (He) of each microsatellite locus varied from 0.451 to 0.857, with an average of 0.688. The polymorphism information content (PIC) of each microsatellite locus ranged from 0.361 to 0.838, with an average of 0.640. Analysis of molecular variance showed that the main variation component existed within the populations (81.64%) rather than among the populations (18.36%). Phylogenetic tree for 15 populations of Hirudo using the NJ method by MEGA 5.1 software were divided into two major clusters. These microsatellite markers will contribute to research on the individual identification, genetic diversity, population structure, genome mapping and conservation biology of Hirudo.  相似文献   

12.
Microsatellite loci known to be polymorphic in baboons (Papio hamadryas) and/or humans were tested in pigtailed macaques (Macaca nemestrina) from the Washington Regional Primate Research Center. Nineteen polymorphisms were identified in the macaques, with an average of 9.2 alleles per locus and an average heterozygosity of 0.76. Seven loci were analyzed using radiolabelled PCR primers and standard gel electrophoresis. Twelve loci were studied using fluorescently labelled primers and the Perkin-Elmer ABI 377 genotyping system. Of these 19 pigtailed macaque polymorphisms, 12 were used to perform paternity testing among captive animals. In a set of 15 infants, this panel of 12 genetic polymorphisms was sufficient to establish paternity in all cases. The number of alleles per locus in pigtailed macaques was compared with the number of alleles in a sample of baboons, and no significant correlation was observed. This indicates that population genetic processes such as genetic drift and recurrent mutation act rapidly enough on these loci to eliminate any relationship in levels of polymorphism across those two species. These 19 loci will be valuable for a range of genetic studies in pigtailed macaques, including paternity testing, analysis of population structure and differentiation among wild populations, and genetic linkage mapping.  相似文献   

13.
《Journal of Asia》2022,25(2):101899
The dung beetle Copris tripartitus (Coleoptera: Scarabaeidae) has long been considered an endangered insect in South Korea; the detection of recent population increases leaves its endangered status uncertain. Population genetic analysis subsequent to development of molecular markers is essential for establishing proper conservation strategies. In this study, we developed ten microsatellite markers specifically for C. tripartitus. Sixty-eight individuals of C. tripartitus collected from six South Korean localities were genotyped to validate these markers and preliminarily assess population genetic characteristics. Per-locus observed number of alleles, observed heterozygosity (HO), and expected heterozygosity (HE) ranged from 5–12, 0.499–0.958, and 0.54–0.743, respectively. All populations showed higher HO than HE, negative values of inbreeding coefficient, and, overall, no sign of recent population bottlenecks (excluding one population, Seosan). This suggests that C. tripartitus did not suffer from genetic drift and inbreeding, which are typically severe in small, isolated populations. Nevertheless, detection of only one of the two gene pools in some populations and resultant genetic subdivision into two population groups may suggest that the population size is not enough to cover both gene pools. Thus, a more extended period of protection may be required to ensure higher genetic diversity of widespread populations and achieve the long-term conservation goal.  相似文献   

14.
四个奥利亚罗非鱼群体的微卫星分析   总被引:2,自引:0,他引:2  
应用筛选到的19对微卫星引物,对四个不同来源的奥利亚罗非鱼(Oreochromis aureus)群体(奥利亚罗非鱼83系、奥利亚罗非鱼02系、奥利亚罗非鱼05系和红色奥利亚罗非鱼)的基因组DNA进行PCR扩增,分析其群体遗传结构和亲缘关系。根据几个群体在19个位点上的PCR扩增图谱,统计计算各群体的遗传多样性指数。四个群体的平均观测遗传杂合度值在0.154—0.391间;平均预期杂合度在0.181—0.428间;平均多态信息含量值在0.1513—0.3882间,说明它们的遗传多样性水平较低。遗传偏离指数D的评估结果显示这4个群体有多个位点存在不同程度的Hardy—Weinberg遗传平衡偏离。运用MicroChecker软件进行零等位基因预测,结果显示除红色奥利亚罗非鱼群体外,其他3个群体中均可能存在零等位基因位点。各群体零等位基因的位点数分别为:83系1个,02系3个,05系7个,红奥群体为0。零等位基因位点的存在可能是导致位点发生Hardy—Weinberg遗传平衡偏离的原因之一。4个群体中,05系群体与83系群体间的遗传相似性系数最高(0.9422),遗传距离最小(0.0596),说明两者亲缘关系最近;83系群体与红奥群体的遗传相似性系数最低(0.6977),遗传距离最大(0.3599),可推断两者亲缘关系最远。根据群体间的遗传距离采用UPGMA法进行聚类,结果表明:83系首先与05系聚类为一支,然后与02系群体聚类,最后与红奥群体聚类。聚类结果说明红奥群体与其他三个群体亲缘关系最远;83系群体与05系群体亲缘关系最近,与02系群体次之。  相似文献   

15.
Previous research has revealed extensive genetic variation among villages on Bougainville, in the Solomon Islands. Using previously published gene frequency data for seven loci, the role of isolation by distance in structuring genetic variation on Bougainville was reanalyzed. Newer methods of kinship estimation show that earlier estimates of the isolation by distance parameters were low. The fit of the model is highly significant (R2 = 0.409; P less than 0.001), and the parameter estimates indicate high isolation: a = 0.0538, b = 0.1978, L = -0.0057. Several methods of residual analysis were applied in order to determine factors affecting the fit of the model. Linguistic similarity has a significant effect on genetic variation once the effects of geographic distance are taken into account. Population-specific deviations from the expected model may be explained, in part, in terms of population history. Compared to other human populations, Bougainville Island shows an even greater among-group variation than has been suggested previously.  相似文献   

16.
In this study, ten microsatellite loci were chosen to estimate the parentage of 260 progeny in five mandarin fish (Siniperca chuatsi) full-sib families. Simulation based on allele frequency date demonstrated the combined exclusion power would be over 97% if the number of loci was up to nine. Based on the information from these nine loci, 98% of progeny were unambiguously allocated to their putative parental pairs in the parentage analysis. The assignment success rate by the real data set was lower than that predicted by the simulations, with 94% of progeny assigned correctly. The discrepancies might be caused by a scoring error or allelic dropout caused by poor quality genomic DNA. Moreover, 69 progeny were selected randomly for the double-blind test, the result indicated that 95% of the progeny can be correctly assigned to their families. This study provided a microsatellite-based approach for parentage assignment in S. chuatsi, and that will be useful for investigation of genetic background and molecular marker-assisted selective breeding in this species.  相似文献   

17.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.  相似文献   

18.
19.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.  相似文献   

20.
Previous studies have indicated that the common European pipistrelle bat ( Pipistrellus pipistrellus ) comprises two cryptic species, P. pipistrellus and Pipistrellus pygmaeus , which differ in echolocation call frequency and mitochondrial DNA sequence. However, levels of divergence based on nuclear markers have not been examined, and hence the potential for male-mediated gene flow between the species cannot be discounted. Moreover, little is known about population structure and migration patterns in either species. Here, we describe the use of microsatellites to investigate nuclear DNA differentiation between, and the pattern of population genetic structure within, the two cryptic pipistrelle species. In total, 1300 individuals from 82 maternity colonies were sampled across the British Isles and Continental Europe. We show, using multivariate analyses, that colonies of the same species are generally genetically more similar to each other than to those from the other species regardless of geographical location. Our findings support the hypothesis that the species are reproductively isolated. Significant patterns of genetic isolation by distance were identified in both species, indicating that mating may occur before any long-distance autumnal migration. The presence of a sea channel does not confer higher levels of genetic differentiation among colonies over and above distance alone in either species. Differences in genetic population structure were identified between the species, with P. pipistrellus showing a wider range of levels of genetic differentiation among colonies and a stronger relationship between genetic and geographical distance than P. pygmaeus . Differences in dispersal, mating behaviour, colony size and/or postglacial colonization patterns could contribute to the differences observed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 539–550.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号