首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The avian stomach is subdivided into two parts, the proventriculus and the gizzard. It has been shown that the gizzard epithelium can express embryonic chick pepsinogen (ECPg) antigen, a marker protein of the proventricular epithelium, as well as normal proventricular epithelium, under the appropriate experimental conditions. To study the possible mechanisms involved in the suppression of ECPg synthesis in the gizzard epithelium during normal development, we carried out heterotypic and heterochronic recombination experiments of the epithelium and mesenchyme of these two organ rudiments. When recombined and cultured with 6-day proventricular mesenchyme, gizzard epithelium of 3.5- to 12-day embryos expressed pepsinogen at all stages tested. However, the ratio of ECPg-positive cells to total epithelial cells in the gizzard epithelium decreased rapidly when epithelium older than 7 days was cultured with proventricular mesenchyme. In contrast to proventricular mesenchyme, 6-day gizzard mesenchyme did not allow ECPg expression in associated proventricular epithelium of 3.5- to 7-day embryos. These results indicate that gizzard epithelium does not express pepsinogen in normal development because of both a decrease in ability to express the enzyme in itself in the course of development and a repressive influence of gizzard mesenchyme.  相似文献   

2.
3.
Summary The avian stomach is composed of two distinct organs, the proventriculus and the gizzard. Pepsinogen expression in the proventricular and gizzard epithelia of chick embryos was investigated immunohistochemically with anti-embryonic chick pepsinogen (anti-ECPg) antiserum. In normal development, the ECPg antigen was expressed only in the glandular epithelial cells of the embryonic proventriculus from the 8th day of incubation onwards. However, both proventricular and gizzard epithelia of 6-day embryos expressed the ECPg antigen when recombined and cultured with the proventricular mesenchyme. Chronological studies revealed that the ECPg antigen was first detected in a few epithelial cells at 3 days of cultivation. The percentage of ECPg-positive cells among the total epithelial cells in each recombinant increased with the length of the culture period and all the glandular epithelial cells were positive at 9 days. During this process, the percentage of ECPg-positive cells in each cultured recombinant was similar in proventricular and gizzard epithelia. Moreover, both epithelia could express the ECPg antigen when recombined and cultured with the oesophageal or small-intestine mesenchyme for 9 days, though the percentage of ECPg-positive cells in each cultured recombinant was much lower than that in the cultured recombinant with the proventricular mesenchyme. These results indicate that the gizzard epithelium of 6-day chick embryos possesses a similar potential for pepsinogen expression as the proventricular epithelium of the same age.  相似文献   

4.
The primitive epithelium of embryonic chicken proventriculus (glandular stomach) differentiates, after day 6 of incubation, into luminal epithelium, which faces the lumen and abundantly secretes mucus, and glandular epithelium, which invaginates into mesenchyme and later expresses embryonic chicken pepsinogen (ECPg). So far it is not well understood how undifferentiated epithelial cells differentiate into these two distinct cell populations. Spasmolytic polypeptide (SP) is known to be expressed in surface mucous cells of mammalian stomach. In order to obtain the differentiation marker for proventricular luminal epithelial cells, we cloned a cDNA encoding chicken SP ( cSP ). Sequence analysis indicated that cSP has the duplicated cysteine-rich domain characteristic of SP. Examination of the spatial and temporal expression pattern of cSP gene revealed that, during embryogenesis, cSP was expressed in luminal epithelial cells of the proventriculus, gizzard, small intestine, and lung, but not the esophagus. In the proventriculus, cSP mRNA was first detected on day 8 of incubation and was localized to differentiated luminal epithelial cells. By using cSP as a molecular marker, the effects of mesenchyme on the differentiation of epithelium were analyzed in vitro . On the basis of these data, a model is presented concerning the differentiation of proventricular epithelium.  相似文献   

5.
The endodermal epithelia of esophagus, proventriculus and gizzard of 6-day chicken embryos can form glands and express embryonic chicken pepsinogen (ECPg), when they are subjected to the influence of proventricular mesenchyme, while intestinal epithelium of the same age cannot respond to the inductive influence of proventricular mesenchyme. We attempted in this paper to know whether this regional difference of epithelia to respond to mesenchymal influence originates very early in development or it is established gradually in the course of development of digestive tract.
The young presumptive intestinal endoderm taken from embryos having 15–20 somites was associated and cultivated with 6-day proventricular mesenchyme. The presumptive intestinal endoderm never expressed ECPg although it formed gland-like structures. In the control explants composed of presumptive stomach endoderm and proventricular mesenchyme, glands were formed and gland cells expressed ECPg detected by immunocytochemistry and in situ hybridization.
These results indicate that the developmental fate of presumptive intestinal endoderm is determined rather strictly at very early developmental stage, and suggest that the segregation of at least two cell lineages occurs early in the development; one which can express ECPg under the influence of proventricular mesenchyme, and another one which cannot express ECPg and differentiates mainly into intestinal epithelium.  相似文献   

6.
Epithelial-mesenchymal interaction plays an important role in the differentiation of digestive tract. However, the factors of these mesenchymes involved in induction of the epithelial differentiation of each organs are still unknown. In the present study, we made reconstituted mesenchymal cell aggregates by mixing proventricular mesenchymal cells with other mesenchymal cells, recombined the reconstituted mesenchyme with gizzard epithelium, and observed the differentiation of the gizzard epithelium in the explants with special attention to the appearance of embryonic chicken pepsinogen, one of the molecular marker of the proventricular epithelial cells, in the gizzard epithelium. The results showed that the proventricular mesenchymal cells induce gland formation and pepsinogen in the gizzard epithelium and that the esophageal and gizzard mesenchymal cells have the inhibitory influence on the differentiation of epithelia toward proventricular epithelium. The cells from small-intestinal, lung and dorsal dermal mesenchyme have no such effect. Based on the results obtained so far, a hypothesis was presented to explain the mechanism regulating the differentiation of the epithelium in the digestive tract in the chicken embryo.  相似文献   

7.
We performed tissue recombination experiments to discover the mesenchymal influences on differentiation of epithelia in chicken digestive organs. Epithelia and mesenchymes were taken from the lung, esophagus, proventriculus, gizzard, small intestine and large intestine of 6-day chicken embryos and recombined in various associations and cultivated in vitro for 6 days. Rather unexpectedly, embryonic chicken pepsinogen (ECPg) gene, a marker of the proventricular epithelium, was induced in the gizzard epithelium, which does not express ECPg in normal development, by the proventricular and lung mesenchymes. In the second half of this study, we investigated the mode of action of mesenchymal cells on ECPg expression in gizzard epithelial cells more precisely using the cell aggregate culture system, in which gizzard epithelial cells were mixed with proventricular, gizzard or lung mesenchymal cells. We found that supporting action of lung mesenchymal cells on ECPg expression was even stronger than that of proventricular mesenchymal cells, and suggest that the action of lung mesenchyme may be due partly to the enhancement of epithelial cell proliferation. According to the results of this study, together with many facts obtained so far, we will discuss a new model for restricted expression of ECPg in the proventricular epithelium in normal development.  相似文献   

8.
In vitro organ culture system which permits embryonic chick proventriculus (glandular stomach) to synthesize pepsinogen de novo was developed. Explants of the proventricular rudiment were cultured on Millipore filters in Medium 199 with Earle's salts supplemented with 50% 12-day embryo extract at 38°C in 95% air and 5% CO2.
In these culture conditions, pepsinogen, a functional marker protein of proventriculus, was first detected after 3 days of cultivation of 6-day chick proventricular rudiment. When recombined and cultured with 6-day proventricular mesenchyme, 6-day oesophageal, proventricular or gizzard (muscular stomach) epithelium expressed pepsinogen while small intestinal epithelium did not. These results were consistent with the previous results obtained by chorioallantoic membrane (CAM) grafting, and showed that the culture conditions are permissive for pepsinogen expression.
When recombined and cultured with reaggregated mesenchymal cells isolated from 6-day proventricular mesenchymal fragments, both 6-day proventricular and gizzard epithelia formed glandular structure and expressed pepsinogen. This indicates that the proventricular mesenchymal cells retain the ability to induce morphogenesis and cytodifferentiation of the proventricular epithelium even if the normal organization of proventricular mesenchyme is once destroyed.  相似文献   

9.
The epithelium of the chicken embryonic glandular stomach (proventriculus) differentiates into both a glandular and a luminal epithelium, the cells of which express specific marker genes. The subsequent formation and differentiation of the glands then proceed under the influence of the mesenchyme. To search for possible candidates for the mesenchymal factors involved, we have now investigated the expression and function of Wnt5a in this process. Our current results show that Wnt5a is expressed in the mesenchyme during active gland formation and that overexpression of this gene in ovo results in the increased and ectopic expression of some of the marker genes of the luminal and glandular epithelia. In particular, the overexpression of Wnt5a markedly enhances the expression of the embryonic chicken pepsinogen gene, a marker of the glandular epithelium, indicating its role as a mesenchymal factor that regulates the differentiation of the proventricular epithelium.  相似文献   

10.
Abstract. Cytodifferentiation of smooth muscle cells has been analyzed immunocytochemically during rat intestinal development and in chimaeric intestines by using monoclonal antibodies reacting specifically with smooth muscle actin species ( CGA7 [10] and anti-α SM-1 [40]). As development proceeds, the various intestinal muscle layers differentiate in the following order: (1) cells expressing smooth muscle actin appear within the mesenchyme of the 15-day fetal rat intestine, in the circular muscle-forming area, the differentiation of cells in the presumptive longitudinal muscle layer starting with a 48-h delay; (2) smooth muscle fibers appear within the connective tissue core of the villi shortly after birth, in parallel with a progressive formation of the muscularis mucosae, which becomes clear-cut only in the course of the 2nd week after birth; (3) a distinct cell layer in the innermost part of the circular muscle layer arises during the perinatal period. Thereafter, the fluorescence pattern remains unchanged until the adult stage. Chimaeric intestines were constructed by the association of 14-day fetal intestinal epithelium and cultured fetal rat or human skin fibroblasts. These fibroblastic cells did not express actin at the time at which they were associated. The immunocytochemical analysis of smooth muscle actin in the hybrid intestines, which had developed as intracoelomic grafts for 12 days, revealed that the skin fibroblastic cells had been induced by the intestinal epithelial cells to differentiate into smooth muscle cells. Such a result was also obtained with allantoic endoderm. It was not obvious in cocultures of intestinal epithelium with skin fibroblastic cells. However, when intestinal epithelial cells were cocultured with intestinal mesenchymal cells, actin expression was stimulated in the latter cell population.  相似文献   

11.
Summary Urogenital sinus endoderm of 16.5-day rat foetuses was combined with stomach mesenchyme and the recombinants were either treated with testosterone and grown in vitro or cultured beneath the kidney capsule of adult male rats of the same strain. It was found that testosterone stimulated mitosis in the urogenital endoderm. In recombinants grown under the kidney capsule a stratified squamous epithelium and stomach-like glands were induced under the influence of the forestomach and glandular stomach mesenchymes. However, the induced glands expressed neither rat pepsinogen nor rat ventral prostatic antigen. They did not produce mRNA for the prostatic steroid-binding protein C1. Thus, stomach mesenchyme of rat foetuses induces organ-specific morphogenesis but not functional differentiation in the heterologous endoderm, indicating that cytodifferentiation does not always accompany morphogenesis.  相似文献   

12.
It is well established that epithelial-mesenchymal interactions play important roles in the differentiation of stomach epithelial cells in the chicken embryo. To analyze mesenchymal influences on the differentiation of the epithelial cells, we developed a tissue culture system for stomach (proventriculus and gizzard) epithelia of chicken embryo, and examined their differentiation in the presence or absence of mesenchyme. Stomach epithelium from 6-day chicken embryo did not express embryonic chicken pepsinogen (ECPg), a marker molecule of glandular epithelial cells of proventriculus, while it expressed marker molecules of epithelial cells of the luminal surface of stomach, when cultured alone on the Millipore filter, covered with the gel consisting of extracellular matrix components. When the epithelium was recombined with mesenchyme separated by the filter, differentiation of the epithelium was affected by the recombined mesenchyme. Proventricular and lung mesenchymes induced the expression of ECPg in epithelial cells, and the expression was extensive when the gel contained basement membrane components. Proventricular and gizzard epithelia showed different responses to the mesenchymal action. We tested the effects of some growth factors on the differentiation of epithelial cells using this culture system. Furthermore we devised a "conditioned semi-solid medium experiment" for analysis of the inductive properties of proventricular and lung mesenchymes. The results of this experiment clearly demonstrated for the first time that diffusible factors from mesenchyme induce the differentiation of glandular epithelial cells in the absence of mesenchymal cells.  相似文献   

13.
During the development of the chicken proventriculus (glandular stomach), the initially undifferentiated epithelium differentiates into two distinct cell populations: the glandular epithelium, cells of which secrete embryonic chicken pepsinogen (ECPg), and luminal epithelial cells, which express the chicken spasmolytic polypeptide gene (cSP). Based on knowledge of the adult mouse stomach, the ligands of epidermal growth factor (EGF) receptor (EGFR) were expected to affect differentiation of the proventricular epithelium. When EGF was added to the medium in which proventriculi were cultured in vitro, gland formation was suppressed in a dose-dependent manner and the amount of ECPg mRNA decreased, whereas morphological differentiation of luminal epithelium was stimulated. Simultaneous treatment of the proventriculus with EGF and tyrphostin 47 resulted in the attenuation of the effect of EGF, suggesting that EGF, or other ligands of EGFR, may actually be involved in the normal course of development of the proventricular epithelium.  相似文献   

14.
Microexplants of 14- or 15-day-old fetal rat intestinal endoderm, separated from mesenchyme by collagenase, were placed on culture dishes coated with different extracellular matrix components or on confluent monolayers of intestinal mesenchymal cells or of fetal skin fibroblasts. Only small variations in the attachment or spreading of the endodermal cells could be observed when they were cultured on the different acellular substrata, and their survival never exceeded one week. When cocultured with intestinal or skin fibroblasts, endodermal cells proliferated and the survival time was prolonged to 2 or 3 weeks. Furthermore, differentiation, as assessed by the polarization of the cells, occurred and was characterized by the maturation of apical brush borders and by the synthesis of microvillar digestive enzymes visualized immunocytochemically with monoclonal antibodies. Glucocorticoids accelerated structural differentiation and stimulated or induced brush border enzymes only in the coculture conditions. These experiments emphasize the role of a fibroblastic support without tissue specificity on the cytodifferentiation of intestinal endodermal cells. They also suggest a mesenchymal dependence on the hormonal response.  相似文献   

15.
During the development of the proventriculus (glandular stomach) of the chicken embryo, the endodermal epithelium invades into the surrounding mesenchyme and forms glands. The glandular epithelial cells produce pepsinogen, while the non-glandular (luminal) epithelial cells secrete mucus. Sonic hedgehog is expressed uniformly in the proventricular epithelium before gland formation, but its expression ceases in gland cells. Here we present evidence that down-regulation of Sonic hedgehog is necessary for gland formation in the epithelium using a specific inhibitor of Sonic hedgehog signaling and virus mediated overexpression of Sonic hedgehog. We also show that gland formation is not induced by down-regulation of Sonic hedgehog alone; a mesenchymal influence is also required.  相似文献   

16.
Determination of the developmental fate in the small intestinal epithelium of the chicken embryo has not been fully analyzed up to the present. This study was carried out to analyze the determination time of the developmental fate of the small intestinal epithelium under the influence of other mesenchymes. The small intestinal epithelium reassociated and cultivated with the proventricular or gizzard mesenchyme or the dermis expressed chicken intestinal fatty acid binding protein, sucrase and CdxA as occurs during the normal development of the small intestinal epithelium. The presumptive intestinal endoderm taken from an earlier stage embryo and associated and cultivated with the proventricular or gizzard mesenchyme, showed gene expression patterns which were the same as those found in normal development. However, when the dermis was associated, the epithelium expressed sonic hedgehog, but never expressed intestinal epithelial- or stomach epithelial-markers. These results indicate that the determination of the developmental fate in the small intestinal epithelium and acquisition of autodifferentiation potency occur at the early stage of the gut development. Moreover the presumptive intestinal endoderm needs the supportive influence of the gut mesenchyme in order to differentiate fully into the intestinal epithelium.  相似文献   

17.
Summary To clarify the precise conditions under which chick embryonic proventricular mesenchyme can induce proventricular epithelial differentiation, transfilter experiments were carried out. Six-day proventricular epithelium formed glands and expressed pepsinogen when a Nucleopore filter with a pore size of more than 0.6 m, but not 0.2 m, was inserted between the epithelium and the proventricular mesenchyme. The larger the pore size of the filter, the more elongated the glands and the more pepsinogen was induced in the explants. The quail nuclear marker and scanning electron microscopy were used to examine penetration of mesenchymal cells through the Nuclepore filter. The filter of more than 0.2 m pore size allowed cell processes of mesenchymal cells to pass through. However, only the filter with a pore size of more than 0.6 m allowed actual migration of mesenchymal cells through the filter, and the larger the pore size of the filter, the more mesenchymal cells passed through. Under the same conditions 6-day and 4.5-day gizzard epithelium formed glands and expressed pepsinogen. These results indicate that a flow of diffusible substances through a Nuclepore filter and even direct contact of a few short cell processes of mesenchymal cells with epithelial cells are not sufficient for induction, and that direct contact of mesenchymal cell processes and/or mesenchymal cells with epithelial cells over a considerably wide area may be prerequisite for the induction.  相似文献   

18.
Classical tissue recombination experiments have reported that at early gestation both tracheal and distal lung epithelium have the plasticity to respond to mesenchymal signals. Herein we examined the role of epithelial-mesenchymal interactions in maintaining epithelial differentiation at late (E19-E21, term = 22 days) fetal gestation in the rat. Isolated distal lung epithelial cells were recombined with mesenchymal cells from lung, skin, and intestine, and the homotypic or heterotypic recombinant cell aggregates were cultured for up to 5 days. Recombining lung epithelial cells with mesenchyme from various sources induced a morphological pattern that was specific to the type of inducing mesenchyme. In situ analysis of surfactant protein (SP)-C, SP-B, and Clara cell secretory protein (CCSP) expression, as well as SP-C and CCSP promoter transactivation experiments, revealed that distal lung epithelium requires lung mesenchyme to maintain the alveolar, but not bronchiolar, phenotype. Incubation of lung recombinants with an anti-FGF7 antibody resulted in a partial inhibition of mesenchyme-induced SP-C promoter transactivation. Immunoreactivity for Delta and Lunatic fringe, components of the Notch pathway that regulates cell differentiation, was downregulated in the heterotypic recombinants. In contrast, Hes1 mRNA expression was increased in these recombinants. Cumulatively, these results suggest that at late fetal gestation, distal lung epithelial cells are not fully committed to a specific phenotype and still have the plasticity to respond to various signals. Their alveolar phenotype is likely maintained by Notch/Notch ligand interactions and mesenchymal factors, including FGF7.  相似文献   

19.
In rodents, the intestinal tract progressively acquires a functional regionalization during postnatal development. Using lactase-phlorizin hydrolase as a marker, we have analyzed in a xenograft model the ontogenic potencies of fetal rat intestinal segments taken prior to endoderm cytodifferentiation. Segments from the presumptive proximal jejunum and distal ileum grafted in nude mice developed correct spatial and temporal patterns of lactase protein and mRNA expression, which reproduced the normal pre- and post-weaning conditions. Segments from the fetal colon showed a faint lactase immunostaining 8-10 d after transplantation in chick embryos but not in mice; it is consistent with the transient expression of this enzyme in the colon of rat neonates. Heterotopic cross-associations comprising endoderm and mesenchyme from the presumptive proximal jejunum and distal ileum developed as xenografts in nude mice, and they exhibited lactase mRNA and protein expression patterns that were typical of the origin of the endodermal moiety. Endoderm from the distal ileum also expressed a normal lactase pattern when it was associated to fetal skin fibroblasts, while the fibroblasts differentiated into muscle layers containing alpha-smooth- muscle actin. Noteworthy, associations comprising colon endoderm and small intestinal mesenchyme showed a typical small intestinal morphology and expressed the digestive enzyme sucrase-isomaltase normally absent in the colon. However, in heterologous associations comprising lung or stomach endoderm and small intestinal mesenchyme, the epithelial compartment expressed markers in accordance to their tissue of origin but neither intestinal lactase nor sucrase-isomaltase. A thick intestinal muscle coat in which cells expressed alpha-smooth- muscle actin surrounded the grafts. The results demonstrate that: (a) the temporal and positional information needed for intestinal ontogeny up to the post-weaning stage results from an intrinsic program that is fixed in mammalian fetuses prior to endoderm cytodifferentiation; (b) this temporal and positional information is primarily carried by the endodermal moiety which is also able to change the fate of heterologous mesodermal cells to form intestinal mesenchyme; and (c) the small intestinal mesenchyme in turn may deliver instructive information as shown in association with colonic endoderm; yet this effect is not obvious with nonintestinal endoderms.  相似文献   

20.
The present study represents a first attempt to elucidate the regulatory properties displayed by the non-epithelial portion of the intestinal mucosa, growing as fibroblasts in monolayer cultures. Thus, we compared the inductive action of 6-day suckling rat duodenal fibroblasts with that displayed by chick embryonic intestinal mesenchyme on the heterotypic cytodifferentiation of 5 1/2-day chick embryonic gizzard endoderm. The latter, isolated by 0.03% collagenase, was surrounded by intestinal intramucosal fibroblastic cell sheets. As control experiments, fibroblastic cells derived from the intestinal muscle or from 20-day fetal rat skin and lung were used. Every type of association was grafted into the coelomic cavity of 3-day chick embryos for 11 to 12 days, a system providing their vascularization and growth. The results clearly demonstrate that the mucosal fibroblastic cells of rat intestine were as potent as embryonic intestinal mesenchyme in inducing brush-border enzymes like sucrase and maltase, in conformity with an induced intestinal morphology. In contrast, the control fibroblastic cells were completely ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号