首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ZRC1 gene encodes a multicopy suppressor of zinc toxicity in Saccharomyces cerevisiae; however, previously we found that the expression of ZRC1 was induced when the intracellular zinc level was decreased. Zrc1 has six putative transmembrane domains and we determined that a Zrc1-GFP fusion protein was localized to the vacuolar membrane. The steady state level of intracellular zinc in a zrc1Delta mutant cultured in the zinc-abundant medium was lower than that in wild type. No distinct difference was observed in the basal activity of glyoxalase I, which is a cytosolic enzyme requiring zinc for catalytic function and is used here as a marker for cytosolic zinc-availability, between wild type and zrc1Delta mutant, although the activity was decreased much greater extent in the zrc1Delta mutant if the cells were exposed to the metal-limited medium. Similarly, the basal expression level of ZRC1-lacZ reporter gene in zrc1Delta mutant was the same as that in wild type; however, the fold of induction of ZRC1-lacZ expression in zrc1Delta mutant under the zinc-limited conditions was higher than that in the wild type. Based on these results, we present a tentative model for the function of Zrc1 as a mechanism to maintain the zinc homeostasis in yeast.  相似文献   

4.
Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.  相似文献   

5.
In this report, we show that zinc is required for endoplasmic reticulum function in Saccharomyces cerevisiae. Zinc deficiency in this yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. Msc2, a member of the cation diffusion facilitator (CDF) family of metal ion transporters, was previously implicated in zinc homeostasis. Our results indicate that Msc2 is one route of zinc entry into the ER. Msc2 localizes to the ER when expressed at normal levels. UPR induction in low zinc is exacerbated in an msc2 mutant. Genetic and biochemical evidence indicates that this UPR induction is due to genuine ER dysfunction. Notably, we found that ER-associated protein degradation is defective in zinc-limited msc2 mutants. We also show that the vacuolar CDF proteins Zrc1 and Cot1 are other pathways of ER zinc acquisition. Finally, zinc deficiency up-regulates the mammalian ER stress response indicating a conserved requirement for zinc in ER function among eukaryotes.  相似文献   

6.
Little is known about how metalloproteins in the secretory pathway obtain their metal ion cofactors. We used the Pho8 alkaline phosphatase of the yeast Saccharomyces cerevisiae to probe this process in vivo . We found that both Pho8 activity and protein accumulation are zinc-dependent and decrease in zinc-limited cells. Low Pho8 accumulation was the result of degradation by vacuolar proteases. Surprisingly, the protective effect of zinc on Pho8 stability was not solely due to Zn2+ binding to the active-site ligands suggesting that the Pho8 protein is targeted for degradation in zinc-limited cells by another mechanism. Pho8 appears to be a rare example of a metalloprotein whose stability is regulated by its metal cofactor independently of active-site binding. We also assessed which zinc transporters are responsible for supplying zinc to Pho8. We found that the Zrc1 and Cot1 vacuolar zinc transporters play the major role while the Msc2/Zrg17 zinc transporter complex active in the endoplasmic reticulum is not involved. These results demonstrate that the vacuolar zinc transporters, previously implicated in metal detoxification, also deliver zinc to certain metalloproteins within intracellular compartments. These data suggest that Pho8 receives its metal cofactor in the vacuole rather than in earlier compartments of the secretory pathway.  相似文献   

7.
Arabidopsis thaliana AtMTP1 belongs to the cation diffusion facilitator family and is localized on the vacuolar membrane. We investigated the enzymatic kinetics of AtMTP1 by a heterologous expression system in the yeast Saccharomyces cerevisiae, which lacked genes for vacuolar membrane zinc transporters ZRC1 and COT1. The yeast mutant expressing AtMTP1 heterologously was tolerant to 10 mm ZnCl(2). Active transport of zinc into vacuoles of living yeast cells expressing AtMTP1 was confirmed by the fluorescent zinc indicator FuraZin-1. Zinc transport was quantitatively analyzed by using vacuolar membrane vesicles prepared from AtMTP1-expressing yeast cells and radioisotope (65)Zn(2+). Active zinc uptake depended on a pH gradient generated by endogenous vacuolar H(+)-ATPase. The activity was inhibited by bafilomycin A(1), an inhibitor of the H(+)-ATPase. The K(m) for Zn(2+) and V(max) of AtMTP1 were determined to be 0.30 microm and 1.22 nmol/min/mg, respectively. We prepared a mutant AtMTP1 that lacked the major part (32 residues from 185 to 216) of a long histidine-rich hydrophilic loop in the central part of AtMTP1. Yeast cells expressing the mutant became hyperresistant to high concentrations of Zn(2+) and resistant to Co(2+). The K(m) and V(max) values were increased 2-11-fold. These results indicate that AtMTP1 functions as a Zn(2+)/H(+) antiporter in vacuoles and that a histidine-rich region is not essential for zinc transport. We propose that a histidine-rich loop functions as a buffering pocket of Zn(2+) and a sensor of the zinc level at the cytoplasmic surface. This loop may be involved in the maintenance of the level of cytoplasmic Zn(2+).  相似文献   

8.
Calcineurin, or PP2B, plays a critical role in mediating Ca2+-dependent signaling in many cell types. In yeast cells, this highly conserved protein phosphatase regulates aspects of ion homeostasis and cell wall synthesis. We show that calcineurin mutants are sensitive to high concentrations of Mn2+ and identify two genes, CCC1 and HUM1, that, at high dosages, increase the Mn2+ tolerance of calcineurin mutants. CCC1 was previously identified by complementation of a Ca2+-sensitive (csg1) mutant. HUM1 (for "high copy number undoes manganese") is a novel gene whose predicted protein product shows similarity to mammalian Na+/Ca2+ exchangers. hum1 mutations confer Mn2+ sensitivity in some genetic backgrounds and exacerbate the Mn2+ sensitivity of calcineurin mutants. Furthermore, disruption of HUM1 in a calcineurin mutant strain results in a Ca2+-sensitive phenotype. We investigated the effect of disrupting HUM1 in other strains with defects in Ca2+ homeostasis. The Ca2+ sensitivity of pmc1 mutants, which lack a P-type ATPase presumed to transport Ca2+ into the vacuole, is exacerbated in a hum1 mutant strain background. Also, the Ca2+ content of hum1 pmc1 cells is less than that of pmc1 cells. In contrast, the Ca2+ sensitivity of vph1 mutants, which are specifically defective in vacuolar acidification, is not significantly altered by disruption of Hum1p function. These genetic interactions suggest that Hum1p may participate in vacuolar Ca2+/H+ exchange. Therefore, we prepared vacuolar membrane vesicles from wild-type and hum1 cells and compared their Ca2+ transport properties. Vacuolar membrane vesicles from hum1 mutants lack all Ca2+/H+ antiport activity, demonstrating that Hum1p catalyzes the exchange of Ca2+ for H+ across the yeast vacuolar membrane.  相似文献   

9.
The intra-luminal acidic pH of endomembrane organelles is established by a proton pump, vacuolar H(+)-ATPase (V-ATPase), in combination with other ion transporter(s). The proton gradient (DeltapH) established in yeast vacuolar vesicles decreased and reached the lower value after the addition of alkaline cations including Na(+). As expected, the uptake of (22)Na(+) was coupled with DeltapH generated by V-ATPase. Disruption of NHX1 or NHA1, encoding known Na(+)/H(+) antiporters, did not result in the loss of (22)Na(+) uptake or the alkaline cation-dependent DeltapH decrease. Upon the addition of sulfate ions, the V-ATPase-dependent DeltapH in the vacuolar vesicles increased, but the membrane potential (DeltaPsi) decreased. Consistent with this observation, radioactive sulfate was transported into the vesicles with a K(m) value of 0.07 mM. The transport activity was unaffected upon disruption of the putative genes coding for homologues of plasma membrane sulfate transporters. These results indicate that the vacuoles exhibit unique Na(+)/H(+) antiport and sulfate transport, which regulate the luminal pH and ion homeostasis in yeast.  相似文献   

10.
11.
Eukaryotic 70 kDa heat shock proteins (Hsp70s) are localized in various cellular compartments and exhibit functions such as protein translocation across membranes, protein folding and assembly. Here we demonstrate that the constitutively expressed members of the yeast cytoplasmic Ssa subfamily, Ssa1/2p, are involved in the transport of the vacuolar hydrolase aminopeptidase 1 from the cytoplasm into the vacuole. The Ssap family members displayed overlapping functions in the transport of aminopeptidase 1. In SSAI and SSAII deletion mutants the precursor of aminopeptidase 1 accumulated in a dodecameric complex that is packaged in prevacuolar transport vesicles. Ssa1/2p was prominently localized to the vacuolar membrane, consistent with the role we propose for Ssa proteins in the fusion of transport vesicles with the vacuolar membrane.  相似文献   

12.
We have measured the uptake of arginine into vacuolar membrane vesicles from Neurospora crassa. Arginine transport was found to be dependent on ATP hydrolysis, Mg2+, time, and vesicle protein with transported arginine remaining unmodified after entry into the vesicles. The Mg2+ concentration required for optimal arginine transport varied with the ATP concentration so that maximal transport occurred when the MgATP2- concentration was at a maximum and the concentrations of free ATP and Mg2+ were at a minimum. Arginine transport exhibited Michaelis-Menten kinetics when the arginine concentration was varied (Km = 0.4 mM). In contrast, arginine transport did not follow Michaelis-Menten kinetics when the MgATP2-concentration was varied (S0.5 = 0.12 mM). There was no inhibition of arginine transport when glutamine, ornithine, or lysine were included in the assay mixture. In contrast, arginine transport was inhibited 43% when D-arginine was present at a concentration 16-fold higher than that of L-arginine. Measurements of the internal vesicle volume established that arginine is concentrated 14-fold relative to the external concentration. Arginine transport was inhibited by dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl-hydrazone, and potassium nitrate (an inhibitor of vacuolar ATPase activity). Inhibitors of the plasma membrane or mitochondrial ATPase such as sodium vanadate or sodium azide did not affect arginine transport activity. In addition, arginine transport had a nucleoside triphosphate specificity similar to that of the vacuolar ATPase. These results suggest that arginine transport is dependent on vacuolar ATPase activity and an intact proton channel and proton gradient.  相似文献   

13.
Intracellular homeostasis for zinc is achieved through the coordinate regulation of specific transporters engaged in zinc influx, efflux, and intracellular compartmentalization. We have identified a novel mammalian zinc transporter, zinc transporter 5 (ZnT-5), by virtue of its similarity to ZRC1, a zinc transporter of Saccharomyces cerevisiae, a member of the cation diffusion facilitator family. Human ZnT-5 (hZnT-5) cDNA encodes a 765-amino acid protein with 15 predicted membrane-spanning domains. hZnT-5 was ubiquitously expressed in all tested human tissues and abundantly expressed in the pancreas. In the human pancreas, hZnT-5 was expressed abundantly in insulin-containing beta cells that contain zinc at the highest level in the body. The hZnT-5 immunoreactivity was found to be associated with secretory granules by electron microscopy. The hZnT-5-derived zinc transport activity was detected using the Golgi-enriched vesicles prepared from hZnT-5-induced HeLa/hZnT-5 cells in which exogenous hZnT-5 expression is inducible by the Tet-on gene regulation system. This activity was dependent on time, temperature, and concentration and was saturable. Moreover, zinc at a high concentration (10 mm) inhibited the growth of yeast expressing hZnT-5. These results suggest that ZnT-5 plays an important role for transporting zinc into secretory granules in pancreatic beta cells.  相似文献   

14.
Multivesicular bodies (MVBs) are late endosomal compartments containing luminal vesicles (MVB vesicles) that are formed by inward budding of the endosomal membrane. In budding yeast, MVBs are an important cellular mechanism for the transport of membrane proteins to the vacuolar lumen. This process requires a class E subset of vacuolar protein sorting (VPS) genes. VPS44 (allelic to NHX1) encodes an endosome-localized Na(+)/H(+) exchanger. The function of the VPS44 exchanger in the context of vacuolar protein transport is largely unknown. Using a cell-free MVB formation assay system, we demonstrated that Nhx1p is required for the efficient formation of MVB vesicles in the late endosome. The recruitment of Vps27p, a class E Vps protein, to the endosomal membrane was dependent on Nhx1p activity and was enhanced by an acidic pH at the endosomal surface. Taken together, we propose that Nhx1p contributes to MVB formation by the recruitment of Vps27p to the endosomal membrane, possibly through Nhx1p antiporter activity.  相似文献   

15.
A triple mutant strain of Saccharomyces cerevisiae lacking its own Na+-ATPases and Na+/H+ antiporters (enal-4delta nha1delta nhx1delta) was used for the expression of the Oryza sativa NHX1 gene encoding a putative vacuolar Na+/H+ exchanger. Upon expression in yeast cells, the OsNhx 1p is not a transport system specific only for sodium cations but it has a broad substrate specificity for at least four alkali metal cations (Na+, Li+, K+ and Rb+) and is able to substitute for the endogenous yeast ScNhx1 antiporter. Its activity contributes to sequestration of alkali metal cations in intracellular vesicles.  相似文献   

16.
Among the members of the major facilitator superfamily of Saccharomyces cerevisiae, we identified genes involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine. ATP-dependent uptake of histidine and lysine by isolated vacuolar membrane vesicles was impaired in YMR088c, a vacuolar basic amino acid transporter 1 (VBA1)-deleted strain, whereas uptake of tyrosine or calcium was little affected. This defect in histidine and lysine uptake was complemented fully by introducing the VBA1 gene and partially by a gene encoding Vba1p fused with green fluorescent protein, which was determined to localize exclusively to the vacuolar membrane. A defect in the uptake of histidine, lysine, or arginine was also observed in the vacuolar membrane vesicles of mutants YBR293w (VBA2) and YCL069w (VBA3). These three VBA genes are closely related phylogenetically and constitute a new family of basic amino acid transporters in the yeast vacuole.  相似文献   

17.
Previous studies of the yeast Saccharomyces cerevisiae indicated that the vacuole is a major site of zinc storage in the cell. However, these studies did not address the absolute level of zinc that was stored in the vacuole nor did they examine the abundances of stored zinc in other compartments of the cell. In this report, we describe an analysis of the cellular distribution of zinc by use of both an organellar fractionation method and an electron probe X-ray microanalysis. With these methods, we determined that zinc levels in the vacuole vary with zinc status and can rise to almost 100 mM zinc (i.e., 7 x 10(8) atoms of vacuolar zinc per cell). Moreover, this zinc can be mobilized effectively to supply the needs of as many as eight generations of progeny cells under zinc starvation conditions. While the Zrc1 and Cot1 zinc transporters are essential for zinc uptake into the vacuole under steady-state growth conditions, additional transporters help mediate zinc uptake into the vacuole during "zinc shock," when zinc-limited cells are resupplied with zinc. In addition, we found that other compartments of the cell do not provide significant stores of zinc. In particular, zinc accumulation in mitochondria is low and is homeostatically regulated independently of vacuolar zinc storage. Finally, we observed a strong correlation between zinc status and the levels of magnesium and phosphorus accumulated in cells. Our results implicate zinc as a major determinant of the ability of the cell to store these other important nutrients.  相似文献   

18.
The Ca(2+)-dependent protein phosphatase calcineurin is an important regulator of ion transporters from many organisms, including the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger Vcx1p. In yeast and plants, cation/H(+) exchangers are important in shaping cytosolic Ca(2+) levels involved in signal transduction and providing tolerance to potentially toxic concentrations of cations such as Ca(2+), Mn(2+) and Cd(2+). Previous genetic evidence suggested Vcx1p is negatively regulated by calcineurin. By utilizing direct transport measurements into vacuolar membrane vesicles, we demonstrate that Vcx1p is a low-affinity Ca(2+) transporter and may also function in Cd(2+) transport, but cannot transport Mn(2+). Furthermore, direct Ca(2+) transport by Vcx1p is calcineurin sensitive. Using a yeast growth assay, a mutant allele of VCX1 (VCX1-S204A/L208P), termed VCX1-M1, was previously found to confer strong Mn(2+) tolerance. Here we demonstrate that this Mn(2+) tolerance is independent of the Ca(2+)/Mn(2+)-ATPase Pmr1p and results from Mn(2+)-specific vacuolar transport activity of Vcx1-M1p. This Mn(2+) transport by Vcx1-M1p is calcineurin dependent, although the localization of Vcx1-M1p to the vacuole appears to be calcineurin independent. Additionally, we demonstrate that mutation of L208P alone is enough to confer calcineurin-dependent Mn(2+) tolerance. This study demonstrates that calcineurin can positively regulate the transport of cations by VCX1-M1p.  相似文献   

19.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

20.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号