首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
BACKGROUND: We and others have shown a critical role for CD34+ CD38- cells in hematopoietic recovery after autologous stem cell transplantation (ASCT), in particular for platelet reconstitution. Thus a routine assessment of CD34+ CD38- cells in freezing-thawing procedures for autografting could represent an important tool for predicting poor engraftment. METHODS: To compare the impact of cryopreservation on CD34+ CD38+ and CD34+ CD38- hematopoietic stem cell subsets, 193 autograft products collected in 84 patients with malignancies were assessed before controlled-rate cryopreservation in 10% DMSO and after thawing for autografting. RESULTS: Cell counts after thawing were significantly different from the pre-freezing counts for total CD34+ (P<0.0001) and CD34+ CD38+ (P<0.0001) cells, but not for CD34+ CD38- cells (P=0.252). Median losses for CD34+, CD34+ CD38+ and CD34+ CD38- cells were, respectively, 11.8%, 11.4% and 0.0%. The magnitude of fresh/post-thawing percentage cell variation was significantly different when comparing between the CD34+ CD38+ and CD34+ CD38- cell subsets (P<0.001). Moreover, CD34+ CD38- cells exhibited recovery values > or =100% in 85/160 graft products, compared with 51/193 in CD34+ CD38+ cells (P<0.0001). Also, recovery values > or =90% were significantly better in the CD34+ CD38- (98/160 grafts) than in the CD34+ CD38+ subsets (89/193 grafts) (P<0.01). DISCUSSION: In this work we have demonstrated that CD34+ cells that do not express the CD38 Ag show a significantly better resistance to cryopreservation. This could represent another example of the particular ability of less committed progenitor cells to overcome environmental injuries. Moreover, we consider routine assessment of CD34+ CD38- cells before freezing as clinically relevant, but post-thawing controls may be avoided because of their good resistance to freezing.  相似文献   

2.
Over the years, various biological parameters have been proposed for predicting rapidity and long term maintenance of hematopoietic engraftment after peripheral blood stem cell transplantation (PBSCT). Determination of the graft content in CFU-GM was the only one available until the end of the eighties. But, for technical reasons, and also because it does not actually evaluate the self-renewal potential of the cell products reinfused, it has now been commonly replaced by the determination of CD34+ cell amounts, which are known to contain the pluripotent hematopoietic stem cells. However, a frequent discrepancy still exists between the number of CD34+ cells reinfused and the engraftment efficiency. We have recently demonstrated a higher accuracy of the numbers of CD34+38- cells contained in graft products to predict rapidity of trilineage engraftment, which has further been confirmed by other investigators. Furthermore, we and others, have proposed a threshold dose of 5 x 10(4) CD34+38- cells/kg b.w. below which the trilineage engraftment kinetics are significantly slower and unpredictible. This "cut-off" value also appears to be a realistic clinical tool to decide if hematopoietic growth factor(s) must be administered or not after PBSCT. Indeed, when for example, rh-G-CSF administration after transplant of CD34+38- amounts < 5 x 10(4) kg has indisputable positive effects on the rapidity of neutrophil engraftment, length of hospitalization and posttransplant costs, enough to make it fully justified in this situation, it is absolutely not the case when it is administered after reinfusion of CD34+38- cell amounts > 5 x 10(4) /kg. In this case, posttransplant rh-G-CSF administration could even result in a decrease in stem cells with self-renewal potential of the graft, which should still raise more concerns for its indiscriminate and costly use.  相似文献   

3.
We validated the correlation of aldehyde dehydrogenase ALDH(br) cells with total and viable CD34(+) cells in fresh and thawed hematopoietic progenitor cell (HPC) products, and looked for a correlation with time to white blood cell (WBC) and platelet engraftment after autologous transplantation, using simple linear regression analyzes. We found a significant correlation between pre-freeze ALDH(br) cell numbers and pre-freeze total CD34(+) (P < 0.001), viable CD34(+) (P < 0.001) and post-thaw viable CD34(+) (P < 0.001) cell numbers. We suggest that ALDH(br) may be substituted for CD34(+) cell numbers when evaluating HPC. As post-thaw viability testing apparently adds no significant information, we suggest that it may not be necessary. Finally, neither marker correlated with time to engraftment in our patients, supporting previous data suggesting the existence of a threshold dose for timely engraftment around 2.5 × 10(6) cells/kg.  相似文献   

4.
BACKGROUND: Prior studies have demonstrated that relatively immature hematopoietic stem cells, including CD34(+) CD38(-) and CD34(+) HLA-DR(-) subsets, correlate with short-term hematopoietic reconstruction (SHR) after transplantation. The aim of this study was to investigate whether these immature CD34(+) subsets also correlate with long-term hematopoietic reconstitution (LHR) in recipients of ABMT. METHODS: We examined stem cell grafts from 58 patients with B-cell lymphoma or CLL who underwent ABMT after myeloablative conditioning. We determined whether total mononuclear cell dose (MNC), colony-forming unit-granulocyte-monocyte (CFU-GM), CD34(+) cell dose and CD34(+) cell subsets (CD34(+) CD38(-) and CD34(+) HLA-DR(-) were associated with SHR and/or LHR. Time to neutrophil engraftment (TNE) and time to platelet engraftment (TPE) were used to measure SHR, while platelet counts at day 100 and 1 year post-ABMT were used as indicators for LHR. RESULTS AND DISCUSSION: CD34(+) cell dose and CD34(+) cell subsets were significantly associated with SHR. However, at day 100 and 1 year post-transplant only total CD34(+) cell dose was associated with LHR. The association of total CD34(+) cell dose with LHR persisted after adjusting for age, sex and disease. None of the CD34(+) cell subsets analyzed showed evidence of significant association with LHR.  相似文献   

5.
Background:Parathyroid hormone (PTH) is a calcium homeostasis regulator and can affect bone marrow niche. PTH leads to the bone marrow stem cell niche expansion as well as the induction of stem cell mobilization from the bone marrow into peripheral blood. In this study, we evaluated the association between pre- transplantation serum PTH levels and the number of circulating CD34+ cells along with the platelets/white blood cells (Plt/WBC) engraftment in patients who underwent autologous Hematopoietic Stem Cell Transplantation.Methods:Subjects for the study were 100 patients who received autologous hematopoietic stem cell transplantation (auto-HSCT), retrospectively. Serum levels of PTH, calcium, phosphorus, and alkaline phosphatase were measured before mobilization. Their impacts were measured on the number of mobilized CD34+ hematopoietic stem cells, and Plt/WBC engraftment.Results:High levels of serum PTH (> 63.10 pg/mL) was significantly associated with higher number of CD34+ cells in peripheral blood after granulocyte- colony stimulating factor (G-CSF)-induced mobilization (p= 0.079*). Serum calcium at low levels were associated with higher number of circulating CD34+ cells post mobilization. Pre- transplantation serum levels of phosphorus and alkaline phosphatase on CD34+ numbers were not statistically significant. Serum Plt/WBC engraftment was not improved in presence of high levels of serum PTH.Conclusion:We suggested that serum PTH levels before transplantation could be influential in raising the number of circulating CD34+ hematopoietic stem cell after mobilization.Key Words: Auto-HSCT, CD34+ Cell, Pre- transplant PTH  相似文献   

6.
Yang H  Zhao H  Acker JP  Liu JZ  Akabutu J  McGann LE 《Cryobiology》2005,51(2):165-175
BACKGROUND: The effect of dimethyl sulfoxide (Me2SO) on enumeration of post-thaw CD45+ and CD34+ cells of umbilical cord blood (HPC-C) and mobilized peripheral blood (HPC-A) has not been systematically studied. METHODS: Cells from leukapheresis products from multiple myeloma patients and umbilical cord blood cells were suspended in 1, 2, 5, or 10% Me2SO for 20 min at 22 degrees C. Cells suspended in Me2SO were then immediately assessed or assessed following removal of Me2SO. In other samples, cells were suspended in 10% Me2SO, cooled slowly to -60 degrees C, stored at -150 degrees C for 48 h, then thawed. The thawed cells in 10% Me2SO were diluted to 1, 2, 5, or 10% Me2SO, held for 20 min at 22 degrees C and then immediately assessed or assessed after the removal of Me2SO. CD34+ cell viability was determined using a single platform flow cytometric absolute CD34+ cell count technique incorporating 7-AAD. RESULTS: The results indicate that after cryopreservation neither recovery of CD34+ cells nor viability of CD45+ and CD34+ cells from both post-thaw HPC-A and HPC-C were a function of the concentration of Me2SO. Without cryopreservation, when Me2SO is present recovery and viability of HPC-C CD34+ cells exposed to 10% Me2SO but not CD45+ cells were significantly decreased. Removing Me2SO by centrifugation significantly decreased the viability and recovery of CD34+ cells in both HPC-A and HPC-C before and after cryopreservation. DISCUSSION: To reflect the actual number of CD45+ cells and CD34+ cells infused into a patient, these results indicate that removal of Me2SO for assessment of CD34+ cell viability should only be performed if the HPC are infused after washing to remove Me2SO.  相似文献   

7.
BACKGROUND: Ex vivo expansion of hematopoietic stem cells (HSC) can help reduce cytopenia following transplantation, especially in NHL patients whose BM is deficient because of extensive chemotherapy. We have previously reported that human umbilical vein endothelial cells (HUVEC) can contribute to improved PBPC expansion when used in co-culture with CD34(+) cells. METHODS: We evaluated the roles of direct HUVEC CD34(+) contact and HUVEC-produced soluble factors. We cultured CD34(+) PBPC harvested from NHL patients in four different conditions: (1) liquid culture without HUVEC; (2) co-culture in contact with HUVEC; (3) co-culture with HUVEC but without direct contact; (4) liquid culture with HUVEC-conditioned medium (CM). Thrombopoietin (Tpo), Flk2Flt3 ligand (FL) and c-kit ligand (KL) with or without rhIL-6 were added to these four culture conditions. RESULTS AND DISCUSSION: Our results showed that HUVEC co-culture or addition of HUVEC-CM to Tpo, FL and KL (TFK) improved CD34(+) PBPC expansion compared with liquid culture, as determined by total viable nucleated cells (TNC), colony-forming cell assay (CFC) and week-6 cobblestone area-forming cells (Wk-6 CAFC) expansions. Non-contact culture led to similar PBPC expansion as contact co-culture; moreover, HUVEC-CM improved PBPC expansion. However, when rhIL-6 was added to HUVEC-CM with TFK, no significant difference was observed. Finally, high quantities of IL-6 were detected in HUVEC-CM and addition of anti-IL-6 Ab inhibited the positive effect of HUVEC on PBPC expansion. Our results thus suggest that HUVEC may improve PBPC expansion, at least through IL-6 secretion.  相似文献   

8.
BACKGROUND: Multiple studies have demonstrated that 'purging' of autografts with 4-hydroperoxycyclophosphamide (4HC) or the related compound mafosfamide (Mf), to eradicate residual leukemia, produces the best results associated with autologous blood and marrow transplantation for AML. However, 4HC purging results in prolonged aplasia. Therefore, we evaluated the potential of ex vivo expansion of Mf-treated CD34+ cells from mobilized PBPC. METHODS: CD34+ cells were isolated from PBPC products and treated with 30 microg/mL Mf. The Mf-treated CD34+ cells were washed and cultured for 14 days in StemLine II-defined media containing recombinant human (rh) SCF, G-CSF and thrombopoietin (Tpo). RESULTS: Treatment with Mf resulted in 90% killing of progenitor cells (GM-CFC) but maintenance of SCID-repopulating cells (SRC). Ex vivo culture of the Mf-treated CD34+ cells resulted in decreased cell numbers (10-20% of the starting cell dose) during the first week. Nevertheless, in the second week of culture the total cell numbers expanded to approximately 20-fold above starting cell numbers and progenitor cells returned to approximately pre-treatment levels. DISCUSSION: These studies demonstrate the potential of ex vivo culture to expand both total cell numbers and progenitor cells following treatment of PBPC CD34+ cells with Mf. Clinical studies are currently being initiated to evaluate the engraftment potential of these purged and expanded products.  相似文献   

9.
BACKGROUND: DMSO is widely used as a cryoprotectant for PBPC. It is desirable to reduce the amount of DMSO without jeopardizing the quality of the stem cell product. The present study was undertaken to investigate whether recovery and survival of CD34+ cells would be significantly altered when PBPC used for autologous transplantations were cryopreserved with four different DMSO concentrations. METHODS: Apheresis samples of PBPC from 20 consecutive patients were mixed in parallel with 2%, 4%, 5% and 10% DMSO, frozen with identical cell concentrations at a controlled rate, and stored in liquid nitrogen for 6-8 weeks. PBPC samples from 11 consecutive patients were also cryopreserved with two different cell concentrations (150 and 300 x 10(6) nucleated cells/mL) to investigate the effect of increasing the cell concentrations while decreasing the DMSO concentration. The flow cytometric absolute count method, based on ISHAGE guidelines, was used to measure the absolute count of total and viable CD34+ cells in the post-thaw samples. RESULTS: PBPC cryopreserved at 150 x 10(6) cells/mL with 2% DMSO yielded significantly inferior CD34+ cell recovery (P < 0.001) and survival (P < 0.001) compared with cryopreservation with 4% and 5% DMSO. This was also observed when comparing higher cell concentrations. However, a reduced cell survival (P = 0.02) was observed when the nucleated cell concentration was increased from 150 to 300 x 10(6) cells/mL in samples cryopreserved with 5% DMSO. DISCUSSION: We conclude that 5% DMSO may be the optimal dose for cryopreserving PBPC as long as the cells have not been concentrated at much more than 200 x 10(6) nucleated cells/mL.  相似文献   

10.
High dose chemotherapy supported with hematopoietic progenitor cells gives a characteristic neutropenic period (blood neutrophils <0.5109 c/l) ranging from 10 to 16 days. The question of a correlation between the CFU-GM content of the transplanted CD34+ cells and time to neutrophil recovery by patients having been given high-dose chemotherapy (HD-CT) with stem cell support was addressed by means of a mathematical model of granulopoiesis. The model utilizes a convection-reaction partial differential equation (PDE) with feedback from a cytokine compartment on proliferation, maturation, and mobilization of granulocytes from bone marrow to blood. The observed number of CFU-GM cells in the transplanted CD34+ cell autograft was used as input to the model. Using this approach, the observed gross relationship between CFU-GM content in the reinfused blood product and engraftment time could be reproduced. At the same time, the effects of assumed physiological mechanisms, especially some of the effects of G-CSF on proliferation rate, maturation rate, mobilization, and cell death, could be investigated and discussed relative to observed engraftment. The model makes it possible to explain how cytokines interfere with progenitor cell mobilization from bone marrow to blood, and it points out the implications of a regulating mechanism for the granulocyte maturation rate.  相似文献   

11.
We comparatively assessed CD34+ cell quantification by two of the recently available single platform assays, the IMAGN 2000 STELLer (Immucor, Lisbon, Portugal) microvolume fluorimetry and the ProCOUNT (BD-ENZIfarma, Lisbon, Portugal) flow cytometry, with our "in-house" dual-platform flow cytometric assay. The performance of the methods was evaluated by linearity and reproducibility tests. The linearity study, over a range of 0-1,200 CD34+ cell/microl, gave a good linear relationship for the three methods, with R(2) > 0.99. Precision tested at three different concentrations gave coefficients of variation ranging from 3.6-26.4% for the STELLertrade mark, 2.4-13.8% for the ProCOUNT, and 3.2-6.4% for flow cytometry. CD34+ cells were quantified in umbilical cord blood (UCB), UCB enriched-leukocyte buffy-coat (BC), mobilized peripheral blood (PB) and mobilized peripheral blood progenitor cells (PBPC) collected by leucapheresis, from a total of 72 samples. Flow cytometric results showed good linear correlation to the absolute counts obtained by the STELLer and ProCOUNT for all samples (R > 0.90 for all methods), with no differences when compared by paired tests (P > 0.05). Linear correlations between methods were also found when individually looking at the different cell sources: UCB or PB, BC, and PBPC, with low, intermediate and high CD34+ cell concentrations, respectively. Furthermore, with the exception of a significant difference between the ProCOUNT and STELLer results for UCB (P < 0.05), no other difference between methods was found for each of the individual populations (P > 0.05). To our knowledge, this is the first report in which the results are presented and analyzed according to each source of CD34+ cells. Our results show that the STELLer and the ProCOUNT are equally efficient for the dual-platform flow cytometric assay in CD34+ cell quantification.  相似文献   

12.
The kinetics of UV-irradiation-induced (254 nm) DNA single-strand breaks (SSBs) were studied in single human hematopoietic cells using alkaline comet assay. Three cell populations were investigated: (i) Bone marrow mononuclear cells (BMMNCs) isolated by density gradient centrifugation, (ii) CD34- cells, and (iii) CD34+ cells. The two latter populations were purified from BMMNCs by negative and positive selection, respectively, using anti-CD34 immunobeads. SSBs were induced faster by 10 and 50 J/m2 than by 2 J/m2 and those caused by 2 J/m2 were joined faster that those caused by 10 or 50 J/m2. During the first 1.5 h after irradiation with a dose of 10 J/m2, CD34+ cells joined SSBs faster than did BMMNCs. The superior joining capacity of CD34+ cells was further substantiated with a higher UV dose. The comet lengths, indicating the extent of DNA repair, among 8/8 study subjects were shorter in CD34+ than in CD34- cells when assessed 24 h after a dose of 50 J/m2. Overall, the comet lengths at 24 h after irradiation were: CD34+ cells; 39+/-12 *m, and CD34- cells; 65+/-18 *m (8 subjects, 50 cells measured from each donor, mean+/-S.D.; p=0.0087, Mann-Whitney U-test). These results strongly suggest that nucleotide excision repair, the major mechanism responsible for the repair of UV-irradiation-induced DNA lesions in mammalian cells, is increased in CD34+ cells compared with CD34- cells and with BMMNCs. These results may have implications in stem cell purging, clinical chemotherapy and carcinogenesis.  相似文献   

13.
Human hemopoietic stem cells (HSC) have been shown to engraft, differentiate, and proliferate in the hemopoietic tissues of sublethally irradiated NOD/LtSZ scid/scid (NOD/SCID) mice. We used this model to study homing, survival, and expansion of human HSC populations from different sources or phenotype. We observed that CD34+ cells homed specifically to bone marrow (BM) and spleen, but by 3 days after injection, survived only in the BM. These BM-homed CD34+ cells proliferated intensively and gave rise to a 12-fold, 5.5-fold, and 4-fold expansion in 3 days for umbilical cord blood, adult mobilized peripheral blood, and adult BM-derived cells, respectively. By injection of purified subpopulations, it was demonstrated that both CD34+38+ and CD34+38- umbilical cord blood HSC homed to the BM and expanded. Importantly, kinetics of expansion were different: CD34+38+ cells started to increase in cell number from day 3 onwards, and by 4 wk after injection, virtually all CD34+ cells had disappeared. In contrast, CD34+38- cells remained quiescent during the first week and started to expand intensively from the third week on. In this paper, we have shown that homing, survival, and expansion of stem cells are three independent phenomena important in the early phase of BM engraftment and that kinetics of engraftment differ between CD34+38+ and CD34+38- cells.  相似文献   

14.
Impaired homing and delayed recovery upon hematopoietic stem cell transplantation (HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing at an early stage and allows early interventions to improve engraftment and outcome after transplantation. In this study, we show sufficient intracellular labeling of UCB-derived CD34+ cells, with 19F-containing PLGA nanoparticles which were detectable with both flow cytometry and magnetic resonance spectroscopy (MRS). In addition, labeled CD34+ cells maintain their capacity to proliferate and differentiate, which is pivotal for successful engraftment after transplantation in vivo. These results set the stage for in vivo tracking experiments, through which the homing efficiency of transplanted cells can be studied.  相似文献   

15.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

16.
《Cytotherapy》2023,25(8):877-884
Background aimsAllogeneic hematopoietic stem cell transplantation (allo-SCT) is a curative treatment for chemo-resistant hematological malignancies. Because of transport restriction imposed by the coronavirus disease 2019 pandemic, regulatory bodies and societies recommended graft cryopreservation before recipient conditioning. However, the freezing and thawing processes, including washing steps, might impair CD34+ cell recovery and viability, thereby impacting the recipient engraftment. Over 1 year (between March 2020 and May 2021), we aimed to analyze the results of frozen/thawed peripheral blood stem cell allografts in terms of stem cell quality and clinical outcomes.MethodsTransplant quality was evaluated by comparing total nucleated cells (TNCs), CD34+ cells and colony-forming unit–granulocyte/macrophage (CFU-GM)/kg numbers as well as TNC and CD34+ cell viabilities before and after thawing. Intrinsic biological parameters such as granulocyte, platelet and CD34+ cell concentrations were analyzed, as they might be responsible for a quality loss. The impact of the CD34+ cell richness of the graft on TNC and CD34 yields was evaluated by designing three groups of transplants based on their CD34 /kg value at collection: >8 × 10 6/kg, between 6 and 8 × 106/kg and <6 × 106/kg. The consequences of cryopreservation were compared in the fresh and thawed group by evaluating the main transplant outcomes.ResultsOver 1 year, 76 recipients were included in the study; 57 patients received a thawed and 19 patients a fresh allo-SCT. None received allo-SCT from a severe acute respiratory syndrome coronavirus 2–positive donor. The freezing of 57 transplants led to the storage of 309 bags, for a mean storage time (between freezing and thawing) of 14 days. For the fresh transplant group, only 41 bags were stored for potential future donor lymphocyte infusions. Regarding the graft characteristics at collection, median number of cryopreserved TNC and CD34+ cells/kg were greater than those for fresh infusions. After thawing, median yields were 74.0%, 69.0% and 48.0% for TNC, CD34+ cells and CFU-GM, respectively. The median TNC dose/kg obtained after thawing was 5.8 × 108, with a median viability of 76%. The median CD34+ cells/kg was 5 × 106, with a median viability of 87%. In the fresh transplant group, the median TNC/kg was 5.9 × 108/kg, and the median CD34+ cells/kg and CFU-GM/kg were 6 × 106/kg and 276.5 × 104/kg, respectively. Sixty-one percent of the thawed transplants were out of specifications regarding the CD34+ cells/ kg requested cell dose (6 × 106/kg) and 85% of them would have had this dose if their hematopoietic stem cell transplant had been infused fresh. Regarding fresh grafts, 15.8% contained less than 6 × 106 CD34+ cells /kg and came from peripheral blood stem cells that did not reach 6 × 106 CD34+ cells /kg at collection. Regarding the factor that impaired CD34 and TNC yield after thawing, no significant impact of the granulocyte count, the platelet count or the CD34+ cells concentration/µL was observed. However, grafts containing more than 8 × 10 6/kg at collection showed a significantly lower TNC and CD34 yield.ConclusionsTransplant outcomes (engraftment, graft-versus-host disease, infections, relapse or death) were not significantly different between the two groups.  相似文献   

17.
《Cytotherapy》2022,24(3):272-281
Background aimsThe use of effective methods for the cryopreservation of hematopoietic stem cells (HSCs) is vital to retain the maximum engraftment activity of cord blood units (CBUs). Current protocols entail the use of dimethyl sulfoxide (DMSO) as intracellular cryoprotective agent (CPA) and dextran and plasma proteins as extracellular CPAs, but DMSO is known to be cytotoxic, and its infusion in patients is associated with mild to moderate side effects. However, new, commercially available, DMSO-free cryopreservation solutions have been developed, but their capacity to protect HSCs remains poorly investigated.MethodsHerein the authors compared the capacity of four DMSO-free freezing media to cryopreserve cord blood (CB) HSCs: CryoProtectPureSTEM (CPP-STEM), CryoScarless (CSL), CryoNovo P24 (CN) and Pentaisomaltose (PIM). Clinical-grade DMSO/dextran solution was used as control.ResultsOf the four cryopreservation solutions tested, the best post-thaw cell viability, recovery of viable CD45+ and CD34+ cells and potency were achieved with CPP-STEM, which was equal or superior to that seen with the control DMSO. CSL provided the second best post-thaw results followed by PIM, whereas CN was associated with modest viability and potency. Further work with CPP-STEM revealed that CB CD34-enriched HSCs and progenitors cryopreserved with CPP-STEM maintained high viability and growth expansion activity. In line with this, a pilot transplantation assay confirmed that CPP-STEM-protected CB grafts supported normal short- and long-term engraftment kinetics.ConclusionsThe authors’ results suggest that new, valuable alternatives to DMSO are now available for the cryopreservation of HSCs and grafts, including CBUs.  相似文献   

18.
Chitteti BR  Liu Y  Srour EF 《PloS one》2011,6(3):e17498
It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34(+) cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34(+) cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34(+) cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34(+) cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment.  相似文献   

19.
20.
In order to develop a convenient small-animal model that can support the differentiation of human bone-marrow-derived CD34+ cells, we transplanted SCID mice with an immortalized human stromal cell line, Lof(11–10). The Lof(11–10) cell line has been characterized to produce human cytokines capable of supporting primitive human hematopoietic cell proliferation in vitro. Intraperitoneal injection of Lof(11–10) cells into irradiated SCID mice by itself resulted in a dose-dependent survival of the mice from lethal irradiation. The radioprotective survival was reflected by an increase in the growth and number of mouse bone-marrow-derived committed hematopoietic progenitors. The Lof(11–10) cells localized to the spleen, but not to the bone marrow of these animals and resulted in detectable levels of circulating human IL-6 in their plasma. Secondary intravenous injections of either human or simian CD34+ cells into the Lof(11–10)-transplanted SCID mice resulted in engraftment of injected cells within the bone marrow of these mice. The utility of this small-animal model that allows the growth and differentiation of human CD34+ cells and its potential use in clinical gene therapy protocols are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号