首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anisotropic flexibility of DNA and the nucleosomal structure.   总被引:2,自引:9,他引:2       下载免费PDF全文
Potential energy calculations of the DNA duplex dimeric subunit show that the double helix may be bent in the direction of minor and major grooves much more easily than in other directions. It is found that the total winding angle of DNA decreases upon such bending. A new model for DNA folding in the nucleosome is proposed on the basis of these findings according to which the DNA molecule is kinked each fifth base pair to the side of the minor and major grooves alternatively. The model explains the known contradiction between a C-like circular dichroism for the nucleosomal DNA and the nuclease digestion data, which testify to the B-form of DNA.  相似文献   

2.
Daunomycin and adriamycin were previously found to produce Q-like banding patterns on chromosomes. The interaction of several anthracyclines with both natural and synthetic DNAs and chromosomes has been investigated in more detail. Daunomycin fluorescence is almost completely quenched by natural DNAs with varying base composition from 31 to 72% G-C and by the alternating polymer poly-d(G-C)·poly-d(G-C). In contrast, daunomycin fluorescence is quenched by only 50% when the dye interacts with synthetic A-T polymers. Thus, differential quenching of daunomycin fluorescence can account for the production of bright bands at contiguous A-T sequences along the chromosome. Slight differences in fluorescence quenching between the repeating and homopolymeric A-T duplex DNAs were observed which can be attributed to differences in affinity of daunomycin for these DNAs. The aminosugar moiety of daunomycin, daunosamine, increases the binding of daunomycin to DNA and also enhances chromosome banding. — Nogalamycin, which displays no differential quenching with the different DNAs in solution, also fails to produce bands on chromosomes. — These findings suggest that non-random nucleotide sequence arrangements along the chromosome are a basic determinant for dye interaction to produce the observed banding patterns. Specific banding procedures may determine the accessibility of these sites within the chromosomal DNA.  相似文献   

3.
Bucceri A  Kapitza K  Thoma F 《The EMBO journal》2006,25(13):3123-3132
Packaging DNA in nucleosomes and higher-order chromatin structures restricts its accessibility and constitutes a barrier for all DNA transactions including gene regulation and DNA repair. How and how fast proteins find access to DNA buried in chromatin of living cells is poorly understood. To address this question in a real time in vivo approach, we investigated DNA repair by photolyase in yeast. We show that overexpressed photolyase, a light-dependent DNA-repair enzyme, recognizes and repairs UV-damaged DNA within seconds. Rapid repair was observed in various nucleosomal regions of the genome including inactive and active genes and repressed promoters. About 50% of cyclobutane pyrimidine dimers were removed in 5 s, >80% in 90 s. Heterochromatin was repaired within minutes, centromeres were not repaired. Consistent with fast conformational transitions of nucleosomes observed in vitro, this rapid repair strongly suggests that spontaneous unwrapping of nucleosomes rather than histone dissociation or chromatin remodeling provides DNA access. The data impact our view on the repressive and dynamic nature of chromatin and illustrate how proteins like photolyase can access DNA in structurally and functionally diverse chromatin regions.  相似文献   

4.
Nucleosome formation and positioning, which play important roles in a number of biological processes, are thought to be related to the distinctive periodic dinucleotide patterns observed in the DNA sequence wrapped around the protein octamer. Previous research shows that flexibility is a key structural property of a nucleosomal DNA sequence. However, the relationship between the flexibility and the periodic dinucleotide patterns has received little attention in research in the past. In this study, we propose the use of three different models to measure the flexibility of yeast DNA sequences. Although the three models involve different parameters, they deliver consistent results showing that yeast nucleosomal DNA sequences are more flexible than non-nucleosomal ones. In contrast to random flexibility values along non-nucleosomal DNA sequences, the flexibility of nucleosomal DNA sequences shows a clear periodicity of 10.14 base pairs, which is consistent with the periodicity of dinucleotide distributions. We also demonstrate that there is a strong relationship between the peak positions of the flexibility and the dinucleotide frequencies. Correlation between the flexibility and the dinucleotide patterns of CA/TG, CG, GC, GG/CC, AG/CT, AC/GT and GA/TC are positive with an average value of 0.5946. The highest correlation is shown by CA/TG with a value of 0.7438 and the lowest correlation is shown by AA/TT with a value of −0.7424. The source codes and data sets are available for downloading on http://www.hy8.com/bioinformatics.htm.  相似文献   

5.
Methylation of nucleosomal and nuclease sensitive DNA.   总被引:2,自引:3,他引:2       下载免费PDF全文
The proportion of cytosines methylated in the DNA of nucleosome oligomers and of core particles appears indistinguishable from that of total nuclear DNA from CHO cells. However the DNA in nucleoprotein which is initially released from nuclei by treatment with very low levels of micrococcal nuclease and the first 10% of material rendered acid soluble by treatment of nuclei with DNase I are enriched 2 fold in their content of 5 methylcytosine. (Cessation of hydrolysis by nuclease occurs concomitantly with precipitation of nucleosomal core particles).  相似文献   

6.
The heat denaturation and renaturation curves of rat liver and ascites hepatoma (AH 108A) chromatins were measured. In these renaturation curves, there are small sigmoidal regions. These sigmoidal regions remained in redenaturation curves and were largely stable to DNAase I digestion. When the chromatins were treated stepwise with NaClO4 and lysine-rich histones were removed, the sigmoidal regions in the renaturation curves disappeared. These results suggested that the sigmoidal regions reflected the interaction of DNA and lysine-rich histones.  相似文献   

7.
K M Lee  S Sif  R E Kingston  J J Hayes 《Biochemistry》1999,38(26):8423-8429
We have employed a site-specific core histone-DNA cross-linking approach to investigate the mechanism of hSWI/SNF remodeling of a nucleosome. Remodeling results in the complete loss of canonical contacts between the N-terminal tail of H2A and DNA while new interactions are detected between this domain and DNA near the center of the original nucleosome. The data are consistent with a model in which remodeling results in the unraveling of a region of DNA from the edge of the nucleosome, leading to a repositioning of the H2A/H2B dimer to a noncanonical position near the center of the remodeled complex. Additionally, we find that prior cross-linking of the H2A N-terminal region to nucleosomal DNA does not restrict hSWI/SNF remodeling of the remainder of the nucleosome. Thus, disruption of both H2A-DNA interactions near the edge of the nucleosome is not an obligatory step in remodeling of the remainder of the complex.  相似文献   

8.
Bishop TC 《Biophysical journal》2008,95(3):1007-1017
Nucleosome stability is largely an indirect measure of DNA sequence based on the material properties of DNA and the ability of a sequence to assume the required left-handed superhelical conformation. Here we focus attention only on the geometry of the superhelix and present two distinct mathematical expressions that rely on the DNA helical parameters (Shift, Slide, Rise, Tilt, Roll, Twist). One representation requires torsion for superhelix formation; the other requires shear. To compare these mathematical expressions to experimental data we develop a strategy for Fourier-filtering the helical parameters that identifies necessary and sufficient conditions to achieve a high-resolution model of the nucleosome superhelix. We apply this filtering strategy to 24 high-resolution structures of the nucleosome and demonstrate that all structures have a highly conserved distribution of Roll, Slide and Twist that involves two length scales. One length scale spans the entire length of nucleosomal DNA. The other is associated with the helix repeat. Our strategy also enables us to identify ground state or simple nucleosomes and altered nucleosome structures. These results form a basis for characterizing structural variations in the emerging family of nucleosome structures and a method for further developing structure-based models of nucleosome stability.  相似文献   

9.
The last five years have seen exciting advances in our understanding of the structure of the nucleosome core particle, the basic repeating unit in all eukaryotic chromatin. A picture emerges in which nucleosomal DNA, while distorted and compacted fivefold by tight interactions with the histone octamer core, is at the same time highly dynamic and adaptable. Here, we summarize the salient features from recent structural studies of nucleosome core particles (both published and unpublished) that concern the structure and dynamics of nucleosomal DNA, and the nature of protein-DNA interactions. Current mechanisms for chromatin remodeling and nucleosome sliding are discussed in light of new structural evidence. Finally, techniques to study nucleosome stability and ultimately dynamics are introduced.  相似文献   

10.
11.
DNA-binding protein was characterized by previous investigators as a single-stranded DNA-binding protein analogous to the gene 32 protein of phage T4 (Van der Vliet &; Levine, 1973; Sugawara et al., 1977). In the studies presented here the interactions between natural and synthetic polynucleotides and the DNA-binding protein of adenovirus 2-infected HeLa cells have been examined. Polynucleotide melting techniques revealed a tight yet dissociable binding to the helix structure of double-stranded DNA. In addition, binding and filter binding competition experiments at high DNA to protein ratios revealed a specific binding to double-stranded DNA termini with a dissociation constant of 1 × 10?9 to 2 × 10?9m. The ability of DNA-binding protein to bind to heat-denatured viral DNA was confirmed but the binding to double-stranded DNA termini was more specific on a molar basis. DNA-binding protein can recognize both flush and staggered ends of double-stranded DNA molecules.  相似文献   

12.
Leslie KD  Fox KR 《Biochemistry》2002,41(10):3484-3497
We have examined the interaction of Hoechst 33258 and echinomycin with nucleosomal DNA fragments which contain isolated ligand binding sites. A 145 base pair fragment was prepared on the basis of the sequence of tyrT DNA, which contained no CpG or (A/T)(4) binding sites for these ligands. Isolated binding sites were introduced into this fragment at discrete locations where the minor groove is known to face toward or away from the protein core when reconstituted onto nucleosome core particles. The interaction of ligands with target sites on these nucleosomal DNA fragments was assessed by DNase I footprinting. We find that Hoechst 33258 can bind to single nucleosomal sites which face both toward and away from the protein core, without affecting the nucleosome structure. Hoechst binding is also observed on nucleosomal fragments which contain two or more drug binding sites, though in these cases the footprints are accompanied by the presence of new cleavage products in positions which suggest that the ligand has caused a proportion of the DNA molecules to adopt a new rotational positioning on the protein surface. Hoechst 33258 does not affect nucleosome reconstitution with any of these fragments. In contrast, the bifunctional intercalating antibiotic echinomycin is not able to bind to single nucleosomal CpG sites. Echinomycin footprints are observed on nucleosomal fragments containing two or more CpG sites, but there are no changes in the cleavage patterns in the remainder of the fragment. Echinomycin abolishes nucleosome reconstitution when included in the reconstitution mixture.  相似文献   

13.
王弋 《生物工程学报》2020,36(12):2877-2891
有机小分子与DNA相互作用机理研究已经成为药物作用机理研究与新药筛选的重要手段之一。槲皮素(Quercetin)是一种多羟基黄酮类化合物,具有抗癌、抗炎、抗菌、抗病毒、降糖降压、免疫调节及保护心血管的作用。实验研究的目的是发现与确认槲皮素与DNA之间是否具有相互作用,以及确定其相互作用的类型。根据荧光光谱法和共振散射荧光光谱法的分析结果,发现槲皮素与鲱鱼精DNA之间存在相互作用;使用紫外-可见分光光度法和荧光偏振分析,发现槲皮素与鲱鱼精DNA之间的相互作用模式不属于嵌插作用,而是沟槽嵌合或者静电相互作用;最后通过分子对接实验,成功佐证槲皮素与鲱鱼精DNA之间的相互作用模式是沟槽结合。该工作有利于理解槲皮素与DNA之间的体外作用方式,助力于相应疾病的药物开发。  相似文献   

14.
Nozaki T  Yachie N  Ogawa R  Saito R  Tomita M 《Gene》2011,476(1-2):10-14
Eukaryotic chromosomal DNA coils around histones to form nucleosomes. Although histone affinity for DNA depends on DNA sequence patterns, how nucleosome positioning is determined by them remains unknown. Here, we show relationships between nucleosome positioning and two structural characteristics of DNA conferred by DNA sequence. Analysis of bendability and hydroxyl radical cleavage intensity of nucleosomal DNA sequences indicated that nucleosomal DNA is bendable and fragile and that nucleosome positional stability was correlated with characteristics of DNA. This result explains how histone positioning is partially determined by nucleosomal DNA structure, illuminating the optimization of chromosomal DNA packaging that controls cellular dynamics.  相似文献   

15.
DNA unwinding and inhibition of T4 DNA ligase by anthracyclines.   总被引:1,自引:5,他引:1       下载免费PDF全文
The ability to alter DNA tertiary structure of ten anthracycline derivatives whose antitumor potency is known was studied by an assay that makes use of nicked circular DNA and bacteriophage T4 DNA ligase. This assay allows the detection of tertiary structure alterations caused by DNA binding of both intercalating and non-intercalating drugs. The determination of these events can be obtained at different temperatures in the range of activity of DNA ligase. The results indicate that anthracyclines alter the DNA tertiary structure but this property does not correlate with their cytotoxic or antitumor activities. An additional interesting finding was that several anthracyclines inhibit T4 DNA ligase. The inhibition can be complete and is a cubic function of drug concentration. The inhibition of DNA ligase does not correlate with the ability of anthracyclines to alter the tertiary structure of DNA but is dependent from the presence of an amino group on the sugar ring.  相似文献   

16.
Condensation of DNA in the nucleosome takes advantage of its double-helical architecture. The DNA deforms at sites where the base pairs face the histone octamer. The largest so-called kink-and-slide deformations occur in the vicinity of arginines that penetrate the minor groove. Nucleosome structures formed from the 601 positioning sequence differ subtly from those incorporating an AT-rich human α-satellite DNA. Restraints imposed by the histone arginines on the displacement of base pairs can modulate the sequence-dependent deformability of DNA and potentially contribute to the unique features of the different nucleosomes. Steric barriers mimicking constraints found in the nucleosome induce the simulated large-scale rearrangement of canonical B DNA to kink-and-slide states. The pathway to these states shows nonharmonic behavior consistent with bending profiles inferred from AFM measurements.  相似文献   

17.
18.

Background

Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures.

Results

Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature.

Conclusions

The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
  相似文献   

19.
The interactions between the different rib cage inspiratory muscles in the generation of pleural pressure remain largely unknown. In the present study, we have assessed in dogs the interactions between the parasternal intercostals and the interosseous intercostals situated on the right and left sides of the sternum. For each set of muscles, the changes in airway opening pressure (DeltaPao) obtained during separate right and left activation were added, and the calculated values (predicted DeltaPao) were then compared with the DeltaPao values obtained during symmetric, bilateral activation (measured DeltaPao). When the parasternal intercostals in one or two interspaces were activated, the measured DeltaPao was commonly greater than the predicted value. The difference, however, was only 10%. When the interosseous intercostals were activated, the measured DeltaPao was nearly equal to the predicted value. These observations strengthen our previous conclusion that the pressure changes produced by the rib cage inspiratory muscles are essentially additive. As a corollary, the rib cage can be considered as a linear elastic structure over a wide range of distortion.  相似文献   

20.
Gene expression in eukaryotes depends upon positioning, mobility and packaging of nucleosomes; thus, we need the detailed information of the human nucleosome core particle (NCP) structure, which could clarify chromatin properties. Here, we report the 2.5 Å crystal structure of a human NCP. The overall structure is similar to those of other NCPs reported previously. However, the DNA path of human NCP is remarkably different from that taken within other NCPs with an identical DNA sequence. A comparison of the structural parameters between human and Xenopus laevis DNA reveals that the DNA path of human NCP consecutively shifts by 1 bp in the regions of superhelix axis location −5.0 to −2.0 and 5.0 to 7.0. This alteration of the human DNA path is caused predominantly by tight DNA–DNA contacts within the crystal. It is also likely that the conformational change in the human H2B tail induces the local alteration of the DNA path. In human NCP, the region with the altered DNA path lacks Mn2+ ions and the B-factors of the DNA phosphate groups are substantially high. Therefore, in contrast to the histone octamer, the nucleosomal DNA is sufficiently flexible and mobile and can undergo drastic conformational changes, depending upon the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号