首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective induction of Phase II over Phase I drug-metabolizing enzymes has been proposed as a mechanism for reduction of chemical carcinogenesis. Enzymes likely to play a role in this amelioration include the glutathione S-transferases (GSTs) and among compounds that selectively induce key GSTs are tert-butylhydroquinone (tBHQ) and oltipraz [4-methyl-5-(2-pyrazinyl)-3H-1,2-dithiole-3-thione]. In vivo, and in hepatoma cells (H4IIE), these two agents induce rat GSTA2 mRNA to a similar extent. However, with a luciferase reporter construct containing 1651 bp of the proximal 5' flanking region of the rGSTA2 gene in the same cell line and under similar conditions, luciferase activity was induced to a much greater extent by tBHQ than by oltipraz. A similar large intercompound differential was seen with reporter constructs containing either the rGSTA2 ARE enhancer and HNF1 site (-872 to -582) or XRE enhancer and HNF1 site (-1110 to -812). In H4IIE cells, the rGSTA2 mRNA response to each agent was completely inhibited by 1 microM actinomycin-D cotreatment. With 1 microM cycloheximide cotreatment however, some induction by tBHQ remained, while induction by oltipraz was completely abolished. The induction response to tBHQ but not oltipraz was augmented by pretreatment with PD98059, a MEK1/2 specific inhibitor. Notwithstanding induction characteristics in common, oltipraz, and tBHQ have sufficient dissimilarities to indicate that rGSTA2 upregulation by the two agents is not identical.  相似文献   

2.
3.
4.
5.
Zhu  Hong  Bui  An  Santo  Arben  Li  Y. Robert 《Molecular and cellular biochemistry》2022,477(5):1499-1506
Molecular and Cellular Biochemistry - Previously, we reported that 3H-1,2-dithiole-3-thione (D3T), an Nrf2 activator, acted as a potential chemoprotectant against lipopolysaccharide (LPS)-induced...  相似文献   

6.
It has been widely recognized that induction of Phase 2 enzymes is an effective and sufficient strategy for achieving protection against carcinogenesis. Nrf2 is the unifying master regulator of these enzymes and its activation in various tissues, including the urinary bladder, is associated with inhibition of carcinogenesis. 5,6-Dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) is a highly potent inducer of Phase 2 enzymes and an activator of Nrf2. In vivo, it is particularly effective in the bladder, showing significant effects in this tissue when dosed to rats at levels as low as 0.98 μmol/(kg day) (0.17 mg/(kg day)). The activities of key Phase 2 enzymes, including glutathione S-transferase, NAD(P)H:quinone:oxidoreductase 1 and glutamate cysteine synthetase, and levels of glutathione were elevated by CPDT in rat bladder in vivo and in cultured bladder cells in vitro. In the bladder, enzyme induction and Nrf2 activation appear to occur exclusively in the epithelium. This is highly significant, since almost all bladder cancers develop from the epithelium. Studies in cultured bladder cells using siRNA to knock down Nrf2 or in cells with total Nrf2 knockout showed that the ability of CPDT to induce Phase 2 enzymes depends completely on Nrf2. In conclusion, CPDT potently and preferentially induces Phase 2 enzymes in the bladder epithelium and Nrf2 is its key mediator.  相似文献   

7.
One dithiolthione and two new methanethiosulfonate derivatives of valproic acid (VPA) were synthesized and tested in vitro as histone deacetylase (HDAC) inhibitors. The new molecules, as well as their sulfurated moieties, exhibited a much stronger inhibition of HDAC enzymatic and antiproliferative activities and histone hyperacetylation than VPA. ACS 2 is the most interesting compound among the new VPA derivatives and its sulfurated moiety, 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione, also known to be a metabolite of anethole trithione, seems to contribute significantly to its activity. This is the first time that HDAC inhibitory activity is described for dithiolethiones and thiosulfonates.  相似文献   

8.
9.
10.
(1) Phase II enzyme inducer is a kind of compound which can promote the expression of antioxidative enzymes through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Recently, it has been reported that these compounds show neuroprotective effect via combating oxidative stress. The purpose of this study is to determine whether phase II enzyme inducers have neuroprotective effects on traumatic spinal cord injury. (2) An organotypic spinal cord culture system was used, Phase II enzyme inducers were added to culture medium for 1 week, motor neurons were counted by SMI-32 staining, glutamate, Nrf2, and Heme oxygenase-1(HO-1) mRNA were tested. (3) This study showed motor neuron loss within 1 week in culture. After 1 week in culture, the system was stable. Moreover, Glutamate was increased when in culture 48 h and decreased after 1 week in culture. There was no significant change between 1 and 4 weeks in culture. Necrotic motor neuron and damaged mitochondrial were observed in culture 48 h. Furthermore, phase II enzyme inducers: tert-butyhydroquinone (t-BHQ), 3H-1,2-dithiole-3-thione (D3T), and 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) were shown to promote motor neuron survival after dissection, it was due to increasing Nrf2 and HO-1 mRNA expression and protecting mitochondrial not due to decreasing glutamate level. (4) The loss of motor neuron due to dissection can mimic severe traumatic spinal cord injury. These results demonstrate that glutamate excitotoxicity and the damage of mitochondrial is possibly involve in motor neuron death after traumatic spinal cord injury and phase II enzyme inducers show neuroprotective potential on motor neuron survival in traumatic spinal cord injury in vitro.  相似文献   

11.
12.
Dong J  Yan D  Chen SY 《PloS one》2011,6(2):e16845
Previous studies have demonstrated that maternal ethanol exposure induces a moderate increase in Nrf2 protein expression in mouse embryos. Pretreatment with the Nrf2 inducer, 3H-1, 2-dithiole-3-thione (D3T), significantly increases the Nrf2 protein levels and prevents apoptosis in ethanol-exposed embryos. The present study, using PC12 cells, was designed to determine whether increased Nrf2 stability is a mechanism by which D3T enhances Nrf2 activation and subsequent antioxidant protection. Ethanol and D3T treatment resulted in a significant accumulation of Nrf2 protein in PC 12 cells. CHX chase analysis has shown that ethanol treatment delayed the degradation of Nrf2 protein in PC12 cells. A significantly greater decrease in Nrf2 protein degradation was observed in the cells treated with D3T alone or with both ethanol and D3T. In addition, D3T treatment significantly reduced ethanol-induced apoptosis. These results demonstrate that the stabilization of Nrf2 protein by D3T confers protection against ethanol-induced apoptosis.  相似文献   

13.
14.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

15.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

16.
17.
Results of in vitro experiments carried out in water at 25 degrees C and at pH 7.56 proved that NADPH in the presence of yeast glutathione reductase did not react with 1,2-dithiole-3-thiones and 1,2-dithiole-3-ones. On the other hand, 3-methylthiodithiolylium ions did react in these conditions. The reaction was identified and methyl 3-mercaptopropenedithioate resulting from a two-electron reduction process was obtained. A kinetic scheme consisting in a biordered mechanism has been found (Km = 2.6 10(-5) mol x l(-1)). All these results raise the question of a possible in vivo methylation (or alkylation) of dithiolethiones occurring prior to any other reductive biochemical process they may undergo. They also raise the question of the very existence (or in any case the generalization) of a reductive metabolism of dithiolethiones.  相似文献   

18.
Extensive evidence suggests that reactive oxygen species are critically involved in the pathogenesis of cardiovascular diseases, such as atherosclerosis and myocardial ischemia-reperfusion injury. Consistent with this concept, administration of exogenous antioxidants has been shown to be protective against oxidative cardiovascular injury. However, whether induction of endogenous antioxidants by chemical inducers in vasculature also affords protection against oxidative vascular cell injury has not been extensively investigated. In this study, using rat aortic smooth muscle A10 cells as an in vitro system, we have studied the induction of cellular antioxidants by the unique chemoprotector, 3H-1,2-dithiole-3-thione [corrected] (D3T) and the protective effects of the D3T-induced cellular antioxidants against oxidative cell injury. Incubation of A10 cells with micromolar concentrations of D3T for 24 h resulted in a significant induction of a battery of cellular antioxidants in a concentration-dependent manner. These included reduced glutathione (GSH), GSH peroxidase, GSSG reductase, GSH S-transferase, superoxide dismutase, and catalase. To further examine the protective effects of the induced endogenous antioxidants against oxidative cell injury, A10 cells were pretreated with D3T and then exposed to either xanthine oxidase (XO)/xanthine, 4-hydroxynonenal, or cadmium. We observed that D3T pretreatment of A10 cells led to significant protection against the cytotoxicity induced by XO/xanthine, 4-hydroxynonenal or cadmium, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium reduction assay. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants in vascular smooth muscle cells can be induced by exposure to D3T, and that this chemical induction of cellular antioxidants is accompanied by markedly increased resistance to oxidative vascular cell injury.  相似文献   

19.
Six novel target compounds 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT) based fibrates were synthesized and evaluated. All the synthesized compounds were preliminarily screened by using the Triton WR-1339-induecd hyperlipidemia model, in which T1 exhibited more potent hypolipidemic property than positive drug fenofibrate (FF). T1 also significantly decreased serum triglycerides (TG), total cholesterol (TC) and low density lipoprotein cholesterin (LDL) in methionine solution (Mets) induced hyperlipidemic mice. Moreover, hepatic transaminases (AST and ALT) were obviously ameliorated after treatment with T1 and the histological observation indicated that T1 ameliorated the injury in liver tissue and inhibited the hepatic lipid accumulation. In the livers of T1-administrated rat, the levels of PPARα related to lipids metabolism were up-regulated. Additional effects such as antioxidant, anti-inflammatory and H2S releasing action confirmed and reinforced the activity of T1 as a potential multifunctional hypolipidemic and hepatoprotective agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号