首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many voice disorders are the result of intricate neural and/or biomechanical impairments that are poorly understood. The limited knowledge of their etiological and pathophysiological mechanisms hampers effective clinical management. Behavioral studies have been used concurrently with computational models to better understand typical and pathological laryngeal motor control. Thus far, however, a unified computational framework that quantitatively integrates physiologically relevant models of phonation with the neural control of speech has not been developed. Here, we introduce LaDIVA, a novel neurocomputational model with physiologically based laryngeal motor control. We combined the DIVA model (an established neural network model of speech motor control) with the extended body-cover model (a physics-based vocal fold model). The resulting integrated model, LaDIVA, was validated by comparing its model simulations with behavioral responses to perturbations of auditory vocal fundamental frequency (fo) feedback in adults with typical speech. LaDIVA demonstrated capability to simulate different modes of laryngeal motor control, ranging from short-term (i.e., reflexive) and long-term (i.e., adaptive) auditory feedback paradigms, to generating prosodic contours in speech. Simulations showed that LaDIVA’s laryngeal motor control displays properties of motor equivalence, i.e., LaDIVA could robustly generate compensatory responses to reflexive vocal fo perturbations with varying initial laryngeal muscle activation levels leading to the same output. The model can also generate prosodic contours for studying laryngeal motor control in running speech. LaDIVA can expand the understanding of the physiology of human phonation to enable, for the first time, the investigation of causal effects of neural motor control in the fine structure of the vocal signal.  相似文献   

2.
A model is introduced for the motor program which controls final position. The first part of the model relates the biomechanical properties of the muscles to the EMG activities of the extensor and flexor muscles and thereby generates quatitative predictions for the relationships between the EMGs, final position, external forces, muscle stiffness, and muscle tension. To the extent that comparable data exist, the model is shown to give correct quantitative predictions. When only qualitative comparisons can be made, the model is consistent with the data in the literature. The model is complete and can be tested quantitatively in detail in the future. An equivalent circuit for the neural network that innervates the muscles is given. It is shown to have the advantages of making the programming of final position simple to either compute or lookup in a table. In addition, new situations, such as adapting to a force, or an unusual viewing angle, lead to very simple changes in the basic program in terms of the equivalent circuit.  相似文献   

3.
4.
A speech act is a linguistic action intended by a speaker. Speech act classification is an essential part of a dialogue understanding system because the speech act of an utterance is closely tied with the user's intention in the utterance. We propose a neural network model for Korean speech act classification. In addition, we propose a method that extracts morphological features from surface utterances and selects effective ones among the morphological features. Using the feature selection method, the proposed neural network can partially increase precision and decrease training time. In the experiment, the proposed neural network showed better results than other models using comparatively high-level linguistic features. Based on the experimental result, we believe that the proposed neural network model is suitable for real field applications because it is easy to expand the neural network model into other domains. Moreover, we found that neural networks can be useful in speech act classification if we can convert surface sentences into vectors with fixed dimensions by using an effective feature selection method.  相似文献   

5.
Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons’ burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center–surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.  相似文献   

6.
We constructed a connectionist model with multilayer perceptron networks for the simulation of word production errors in the Finnish language. Such errors occur as slips of the tongue in healthy subjects and even more often in aphasic patients suffering from brain damage. Word production errors are of theoretical interest as they open an avenue to inner workings of the language production system. Here we present our coding schemes for semantic and phoneme information of words, investigate the general properties of the model, and compare the results of the model against empirical naming error data from ten aphasic patients. The model was reasonable in simulating word production errors in this heterogeneous group of aphasic patients.  相似文献   

7.
Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.  相似文献   

8.
9.
A consideration of the storage of information as an energized neuronal state leads to the development of a new type of neural network model which is capable of pattern recognition, concept formation and recognition of patterns of events in time. The network consists of several layers of cells, each cell representing by connections from the lower levels some combination of features or concepts. Information travels toward higher layers by such connections during an association phase, and then reverses during a recognition phase, where higher-order concepts can redirect the flow to more appropriate elements, revising the perception of the environment. This permits a more efficient method of distinguishing closely-related patterns and also permits the formation of negative associations, which is a likely requirement for formation of "abstract" concepts.  相似文献   

10.
We studied the dynamics of a neural network that has both recurrent excitatory and random inhibitory connections. Neurons started to become active when a relatively weak transient excitatory signal was presented and the activity was sustained due to the recurrent excitatory connections. The sustained activity stopped when a strong transient signal was presented or when neurons were disinhibited. The random inhibitory connections modulated the activity patterns of neurons so that the patterns evolved without recurrence with time. Hence, a time passage between the onsets of the two transient signals was represented by the sequence of activity patterns. We then applied this model to represent the trace eye blink conditioning, which is mediated by the hippocampus. We assumed this model as CA3 of the hippocampus and considered an output neuron corresponding to a neuron in CA1. The activity pattern of the output neuron was similar to that of CA1 neurons during trace eye blink conditioning, which was experimentally observed.  相似文献   

11.
A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.  相似文献   

12.
E Magosso  C Cuppini  M Ursino 《PloS one》2012,7(8):e42503
Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.  相似文献   

13.
A model of neural network extracting binocular parallax is proposed. It is a multilayered network composed of analog threshold elements. Three types of binocular neurons are included in this model. They are binocular simple neurons, binocular gate neurons and binocular depth neurons. The final layers of this model consist of elements which correspond to the binocular depth neurons. The performance of the model has been simulated on a digital computer. The results of the computer simulation show that every element of this model acts like neurons found in cat's and monkey's visual system and this model extracts binocular parallax caused by simple line components satisfactorily.  相似文献   

14.
A self-organizing, feature-extracting network (von der Malsburg, 1973) is extended to two feature dimensions to encompass line orientation and color. It is applied to McCollough effects, particularly longlasting, contingent-aftereffects. McCollough effects are thought to involve low-level associative memory in the form of synaptic modification. The McCollough-Malsburg Model (MMM) embodies positive synaptic modification with correlated firing of units in an input layer and an excitatory cortical layer. Computer simulation of MMM reproduces orientation-contingent color aftereffects. The model embodies many of the mechanisms thought to be operating in developmental plasticity, suggesting that equivalent mechanisms may be involved in adult long-term adaptation as well.This work was supported in part by NIH Grant No. 5 R01 NS09755-4 COM of the National Institute of Neurological Diseases and Stroke (M.A. Arbib, Principal Investigator)  相似文献   

15.
As a dynamical model for motor cortical activity during hand movement we consider an artificial neural network that consists of extensively interconnected neuron-like units and performs the neuronal population vector operations. Local geometrical parameters of a desired curve are introduced into the network as an external input. The output of the model is a time-dependent direction and length of the neuronal population vector which is calculated as a sum of the activity of directionally tuned neurons in the ensemble. The main feature of the model is that dynamical behavior of the neuronal population vector is the result of connections between directionally tuned neurons rather than being imposed externally. The dynamics is governed by a system of coupled nonlinear differential equations. Connections between neurons are assigned in the simplest and most common way so as to fulfill basic requirements stemming from experimental findings concerning the directional tuning of individual neurons and the stabilization of the neuronal population vector, as well as from previous theoretical studies. The dynamical behavior of the model reveals a close similarity with the experimentally observed dynamics of the neuronal population vector. Specifically, in the framework of the model it is possible to describe a geometrical curve in terms of the time series of the population vector. A correlation between the dynamical behavior of the direction and the length of the population vector entails a dependence of the neural velocity on the curvature of the tracing trajectory that corresponds well to the experimentally measured covariation between tangential velocity and curvature in drawing tasks.On leave of absencefrom the Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.  相似文献   

16.
The capacities of a specially designed neural network for familiarity recognition and recollection have been compared. Recognition is based on calculating “image familiarity” as a modified Hopfield energy function in which the value of the inner sum is replaced by the sign of this value. This replacement makes the calculation of familiarity compatible with the basic dynamic equations of the Hopfield network and is in fact reduced to calculating the scalar product of the neuronet state vectors at two successive time steps.  相似文献   

17.
A neural network which models multistable perception is presented. The network consists of sensor and inner neurons. The dynamics is established by a stochastic neuronal dynamics, a formal Hebb-type coupling dynamics and a resource mechanism that corresponds to saturation effects in perception. From this a system of coupled differential equations is derived and analyzed. Single stimuli are bound to exactly one percept, even in ambiguous situations where multistability occurs. The network exhibits discontinuous as well as continuous phase transitions and models various empirical findings, including the percepts of succession, alternative motion and simultaneity; the percept of oscillation is explained by oscillating percepts at a continuous phase transition. Received: 13 September 1995 / Accepted: 3 June 1996  相似文献   

18.
This paper deals with the problem of representing and generating unconstrained aiming movements of a limb by means of a neural network architecture. The network produced time trajectories of a limb from a starting posture toward targets specified by sensory stimuli. Thus the network performed a sensory-motor transformation. The experimenters trained the network using a bell-shaped velocity profile on the trajectories. This type of profile is characteristic of most movements performed by biological systems. We investigated the generalization capabilities of the network as well as its internal organization. Experiments performed during learning and on the trained network showed that: (i) the task could be learned by a three-layer sequential network; (ii) the network successfully generalized in trajectory space and adjusted the velocity profiles properly; (iii) the same task could not be learned by a linear network; (iv) after learning, the internal connections became organized into inhibitory and excitatory zones and encoded the main features of the training set; (v) the model was robust to noise on the input signals; (vi) the network exhibited attractor-dynamics properties; (vii) the network was able to solve the motorequivalence problem. A key feature of this work is the fact that the neural network was coupled to a mechanical model of a limb in which muscles are represented as springs. With this representation the model solved the problem of motor redundancy.  相似文献   

19.
A hierarchical neural network model for associative memory   总被引:1,自引:0,他引:1  
A hierarchical neural network model with feedback interconnections, which has the function of associative memory and the ability to recognize patterns, is proposed. The model consists of a hierarchical multi-layered network to which efferent connections are added, so as to make positive feedback loops in pairs with afferent connections. The cell-layer at the initial stage of the network is the input layer which receives the stimulus input and at the same time works as an output layer for associative recall. The deepest layer is the output layer for pattern-recognition. Pattern-recognition is performed hierarchically by integrating information by converging afferent paths in the network. For the purpose of associative recall, the integrated information is again distributed to lower-order cells by diverging efferent paths. These two operations progress simultaneously in the network. If a fragment of a training pattern is presented to the network which has completed its self-organization, the entire pattern will gradually be recalled in the initial layer. If a stimulus consisting of a number of training patterns superposed is presented, one pattern gradually becomes predominant in the recalled output after competition between the patterns, and the others disappear. At about the same time when the recalled pattern reaches a steady state in he initial layer, in the deepest layer of the network, a response is elicited from the cell corresponding to the category of the finally-recalled pattern. Once a steady state has been reached, the response of the network is automatically extinguished by inhibitory signals from a steadiness-detecting cell. If the same stimulus is still presented after inhibition, a response for another pattern, formerly suppressed, will now appear, because the cells of the network have adaptation characteristics which makes the same response unlikely to recur. Since inhibition occurs repeatedly, the superposed input patterns are recalled one by one in turn.  相似文献   

20.
A model of neural network to recognize spatiotemporal patterns is presented. The network consists of two kinds of neural cells: P-cells and B-cells. A P-cell generates an impulse responding to more than one impulse and embodies two special functions: short term storage (STS) and heterosynaptic facilitation (HSF). A B-cell generates several impulses with high frequency as soon as it receives an impulse. In recognizing process, an impulse generated by a P-cell represents a recognition of stimulus pattern, and triggers the generation of impulses of a B-cell. Inhibitory impulses with high frequency generated by a B-cell reset the activities of all P-cells in the network.Two examples of spatiotemporal pattern recognition are presented. They are achieved by giving different values to the parameters of the network. In one example, the network recognizes both directional and non-directional patterns. The selectivities to directional and non-directional patterns are realized by only adjusting excitatory synaptic weights of P-cells. In the other example, the network recognizes time series of spatial patterns, where the lengths of the series are not necessarily the same and the transitional speeds of spatial patterns are not always the same. In both examples, the HSF signal controls the total activity of the network, which contributes to exact recognition and error recovery. In the latter example, it plays a role to trigger and execute the recognizing process. Finally, we discuss the correspondence between the model and physiological findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号