首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
l-Leucyl l-leucine methyl ester (LeuLeuOMe) is a lysosomotropic agent which is converted to a membranolytic compound by dipeptidyl peptidase I and kills human leukocytes such as CD8+ T cells and monocytes but not B cells. The reagent has also been used in mice on the assumption that the cell-type specificity to murine leukocytes is the same as that to human leukocytes. During study on the effect of LeuLeuOMe on antigen-driven IL-2 production using murine splenocytes as antigen-presenting cells, however, we noticed that murine B cells were sensitive to LeuLeuOMe. We therefore examined the cell-type specificity using murine splenocytes and peritoneal macrophages. Flow cytometric analysis revealed that the most sensitive cells to LeuLeuOMe were CD8+ cells and that CD19+ cells (B cells) were as sensitive as CD3+ cells (T cells). Murine splenic B cells, which were either positively or negatively sorted with a cell sorter, were also sensitive to LeuLeuOMe, whereas human peripheral blood B cells, which were positively sorted, were not. Peritoneal macrophages were the most insensitive to LeuLeuOMe. Thus, this study demonstrated that the cell-type specificity to murine leukocytes is different from that to human leukocytes.  相似文献   

2.
3.
We report here that induction of ectoATPase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is cell-type specific and not a generalized response to aryl hydrocarbon (Ah) receptor activation. TCDD increased [14C]-ATP and -ADP metabolism in two mouse hepatoma lines, Hepa1c1c7 and Hepa1-6 cells, but not in human hepatoma HepG2 or HuH-7 cells, human umbilical vein endothelial cells (HUVEC), chick hepatoma (LMH) cells, or chick primary hepatocytes or cardiac myocytes, even though all of those cell types were Ah receptor-responsive, as evidenced by cytochrome P4501A induction. To determine whether the differences in ectonucleotidase responsiveness to TCDD might be related to differences in cell-type ectonucleotidase expression, ATP and ADP metabolite patterns, the products of several classes of ectonucleotidases including ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), ectophosphodiesterase/pyrophosphatases (E-NPP enzymes) and ectoalkaline phosphatase activities were examined. Those patterns, together with results of enzyme assays, Western blotting, or semiquantitative RT-PCR show that NTPDase2 is the main ectonucleotidase for murine and human hepatoma cells, NTPDase3 for chick hepatocytes and LMH cells, and an E-NPP enzyme for chick cardiac myocytes. Evidence for NTPDase2 expression was lacking in all cells except the mouse and human hepatoma cells. TCDD increased expression of the NTPDase2 gene but only in the mouse and not in the human hepatoma cells. TCDD did not increase NTPDase3, NTPDase1, E-NPP, or alkaline phosphatase in any of the cell types examined. The failure of TCDD to increase ATP metabolism in HUVEC, chick LMH cells, hepatocytes, and cardiac myocytes can be attributed to their lack of NTPDase2 expression, while the increase in ATP metabolism by TCDD in the mouse but not the human hepatoma cells can be explained by differences in TCDD effects on mouse and human hepatoma NTPDase2 gene expression. In addition to characterizing effects of TCDD on ectonucleotidases, these studies reveal major differences in the complements of ectonucleotidases present in different cell types. It is likely that such differences are important for cell-specific susceptibility to extracellular nucleotide toxicity and responses to purinergic signaling.  相似文献   

4.
Summary. The effects of metabotropic glutamate receptor (mGluR) activation were studied in medium spiny neurons and large aspiny (LA) interneurons by means of electrophysiological and optical recordings. DCG-IV and L-SOP, agonists for group II and III mGluRs, respectively, produced a presynaptic inhibitory effect on corticostriatal glutamatergic excitatory postsynaptic potentials (EPSPs) in both spiny and LA cells. Activation of group I mGluRs by the selective agonist 3,5-DHPG produced no effect on membrane properties and glutamatergic transmission in spiny neurons, whereas it did cause a membrane depolarization in LA interneurons coupled to increased input resistance. In combined optical and electrophysiological experiments, in spiny neurons 3,5-DHPG enhanced membrane depolarization and intracellular calcium (Ca2+) levels induced by NMDA applications, but not in LA interneurons. These data suggest the existence of a positive interaction between NMDA and group I mGlu receptors only in medium spiny cells which might, at least partially, account for the differential vulnerability to excitotoxic damage observed in striatal neuronal subtypes. Accepted September 20, 1999  相似文献   

5.
The plant hormone auxin plays a critical role in root growth and development; however, the contributions or specific roles of cell-type auxin signals in root growth and development are not well understood. Here, we mapped tissue and cell types that are important for auxin-mediated root growth and development by manipulating the local response and synthesis of auxin. Repressing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele strongly inhibited root growth, with the largest effect observed in the endodermis. Enhancing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele also caused reduced root growth, albeit to a lesser extent. Moreover, we established that root growth was inhibited by enhancement of auxin synthesis in specific cell types of the epidermis, cortex and endodermis, whereas increased auxin synthesis in the pericycle and stele had only minor effects on root growth. Our study thus establishes an association between cellular identity and cell type-specific auxin signaling that guides root growth and development.  相似文献   

6.
7.
In the heterocystous cyanobacterium Anabaena PCC 7120, the modification state of the signalling PII protein is regulated according to the nitrogen regime of the cells, as already observed in some unicellular cyanobacteria. However, during the adaptation to diazotrophic growth conditions, PII is phosphorylated in vegetative cells while unphosphorylated in heterocysts. Isolation of mutants affected on PII modification state and analysis of their phenotypes allow us to show the implication of PII in the regulation of molecular nitrogen assimilation and more specifically, the requirement of unmodified state of PII in the formation of polar nodules of cyanophycin in heterocysts.  相似文献   

8.
Paliulis LV  Nicklas RB 《Chromosoma》2005,113(8):440-446
The distinctive behaviors of chromosomes in mitosis and meiosis depend upon differences in kinetochore position. Kinetochore position is well established except for a critical transition between meiosis I and meiosis II. We examined kinetochore position during the transition and compared it with the position of kinetochores in mitosis. Immunofluorescence staining using the 3F3/2 antibody showed that in mitosis in grasshopper cells, as in other organisms, kinetochores are positioned on opposite sides of the two sister chromatids. In meiosis I, sister kinetochores are positioned side by side. At nuclear envelope breakdown in meiosis II, sister kinetochores are still side by side, but are separated by the time all chromosomes have fully attached in metaphase II. Micromanipulation experiments reveal that this switch from side-by-side to separated sister kinetochores requires attachment to the spindle. Moreover, it is irreversible, as chromosomes detached from a metaphase II spindle retain separate kinetochores. How this critical separation of sister kinetochores occurs in meiosis is uncertain, but clearly it is not built into the chromosome before nuclear envelope breakdown, as it is in mitosis.  相似文献   

9.
10.
In nitrogen-limiting conditions, approximately 10% of the vegetative cells in filaments of the cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 differentiate into nitrogen-fixing heterocysts. During the late stages of heterocyst differentiation, three DNA elements, each embedded within an open reading frame, are programmed to excise from the chromosome by site-specific recombination. The DNA elements are named after the genes that they interrupt: nifD, fdxN, and hupL. The nifD and fdxN elements each contain a gene, xisA or xisF, respectively, that encodes the site-specific recombinase required for programmed excision of the element. Here, we show that the xisC gene (alr0677), which is present at one end of the 9,435-bp hupL element, is required for excision of the hupL element. A strain in which the xisC gene was inactivated showed no detectable excision of the hupL element. hupL encodes the large subunit of uptake hydrogenase. The xisC mutant forms heterocysts and grows diazotrophically, but unlike the wild type, it evolved hydrogen gas under nitrogen-fixing conditions. Overexpression of xisC from a plasmid in a wild-type background caused a low level of hupL rearrangement even in nitrogen-replete conditions. Expression of xisC in Escherichia coli was sufficient to produce rearrangement of an artificial substrate plasmid bearing the hupL element recombination sites. Sequence analysis indicated that XisC is a divergent member of the phage integrase family of recombinases. Site-directed mutagenesis of xisC showed that the XisC recombinase has functional similarity to the phage integrase family.  相似文献   

11.
12.
13.
14.
Abstract A new procedure for the preparation of intact microbial DNA allowed us to obtain DNA, suitable for pulsed-field gel electrophoresis, from both vegetative cells and heterocysts (differentiated cells with a potential for nitrogen fixation) of the cyanobacterium Anabaena PCC 7120. Through this procedure it was possible to locate genomic developmental rearrangements by visualizing the increased mobility of large heterocyst DNA fragments undergoing rearrangements. The 390-kb Sal I fragment of vegetative cell DNA was shown to lose about 70 kb as a result of the previously reported 11- and 55-kb deletions, restoring functional nif operons. A new developmental rearrangement was also detected. This takes place more than 600 kb upstream of the nif operons and results in the excision of about 18 kb from the 505-kb fragment.  相似文献   

15.
  相似文献   

16.
Interleukin (IL)-1alpha is a potent stimulator of prostaglandin production in bovine endometrium, and IL-1 affects plasminogen activator (PA) activity in several types of cells. In this study, we determined the effects of IL-1alpha and IL-1beta on production of the prostaglandins PGF(2alpha) and PGE(2) and on PA activity in cultured bovine endometrial epithelial and stromal cells. We also determined the effects of PGE(2) and PGF(2alpha) on PA activity in these cells. Finally, we used RT-PCR to examine the expression of IL-1alpha, IL-1beta, and IL-1 receptor type 1 (IL-1R) mRNA in cultured bovine endometrial cells. This analysis revealed that IL-1alpha mRNA was present only in the stromal cells, whereas IL-1beta and IL-1R mRNAs were present in both cell types. When cultured cells were exposed to IL-1alpha and IL-1beta at concentrations ranging from 0.006 to 3 nM for 24h, IL-1alpha and IL-1beta were found to dose-dependently stimulate PGE(2) and PGF(2alpha) production in stromal cells (P<0.05) but not in epithelial cells. On the other hand, exposure to IL-1alpha and IL-1beta dose-dependently increased PA activity in the epithelial cells, whereas neither stimulated PA production in the stromal cells. When cells were exposed to IL-1alpha and IL-1beta at concentrations ranging from 0.06 to 3 nM for 24h, the two IL-1s differed in their effects on both PGE(2) and PGF(2alpha) production in stromal cells and had significantly differed in their effects on PA activity in epithelial cells. Exposure to PGE(2) and PGF(2alpha) did not affect PA activity in either stromal or epithelial cells (P>0.05). Taken together, these results suggest the possibility that both IL-1alpha and IL-1beta are produced by the stromal cells, that IL-1beta is produced by the epithelial cells, and that IL-1alpha is a far more potent stimulator than IL-1beta of prostaglandin and PA production in cultured bovine endometrial epithelial and stromal cells.  相似文献   

17.
Mitogen-activated protein kinase (MAPK) pathways can play a role in F-actin dynamics. In particular, the p38 MAPK/MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) pathway is involved in F-actin alternations. Previously, we showed that MK5 is implicated in F-actin rearrangement induced by the cAMP/cAMP-dependent protein kinase pathway in PC12 cells, while others found Hsp27 to be a good in vitro MK5 substrate. Here we demonstrate that MK5 can specifically interact with Hsp27 in vivo and can induce phosphorylation at serine residues 78 and 82 in cells. siRNA-mediated depletion of Hsp27 protein levels, as well as overexpression of the non-phosphorylatable Hsp27-3A mutant prevented forskolin-induced F-actin reorganization. While ectopic expression of a constitutive active MK5 mutant was sufficient to induce F-actin rearrangement in PC12 cells, co-expression of Hsp27-3A could ablate this process. Our results imply that MK5 is involved in Hsp27-controlled F-actin dynamics in response to activation of the cAMP-dependent protein kinase pathway. These findings render the MK5/Hsp27 connection into a putative therapeutic target for conditions with aberrant Hsp27 phosphorylation such as metastasis, cardiovascular diseases, muscle atrophy, autoimmune skin disease and neuropathology.  相似文献   

18.
Peterson FC  Brooks CL 《FEBS letters》2000,472(2-3):276-282
Primate growth hormones (GH) activate both primate and non-primate somatotrophic receptors (GH receptors), but non-primate GHs do not activate primate GH receptors. Previous studies argued the interaction of Asp(171) of human GH and Arg(43) of the receptor produced an attractive ionic interaction. In non-primate GHs, His(170) replaces the homologous Asp(171), producing a repulsive interaction with Arg(43) of the primate receptor which was believed to reduce the attraction of non-primate GH for the human GH receptor, thus providing species specificity. In this report, H170D bovine GH had activity and affinity for human GH receptors approaching those of human GH. In contrast, replacing Asp(171) of human GH with His did not significantly reduce somatotrophic activity, indicating that species specificity is not wholly explained by this residue's interaction with Arg(43) of the receptor. Deletion of either Phe(44) (a residue present only in primate GHs) or residues 32-46 (20-kDa form of human GH) each only marginally reduced somatotrophic activities. But the combination of the D171H mutation with either DeltaPhe(44) or Delta32-46 in human GH reduced binding and activity in a greater than additive fashion, indicated a functional interaction between these distant structural features. In bovine GH addition of phenylalanine at position 44 increased the somatotrophic activity and receptor affinity in cells containing the human GH receptor. The combination of the H170D mutation and the addition of phenylalanine at position 44 created a bovine GH with activity indistinguishable from wild-type human GH. Based on evidence from both bovine and human GHs, the cooperative interaction of these two distant motifs determined the species specificity and indicated that structural plasticity was a critical feature necessary for the species specificity of somatotrophic activity.  相似文献   

19.
R Godiska  M C Yao 《Cell》1990,61(7):1237-1246
During macronuclear development in ciliates, precise deletion events eliminate thousands of specific DNA segments. Each segment is bounded by a unique pair of short direct repeats, but no other common feature has been reported. To determine the critical cis-acting sequences, we developed an in vivo system for analyzing this process in Tetrahymena. We show that sequences essential for recognition and excision of one such region are located within the 70 bp of DNA flanking either side of it. Three authentic splice sites and one cryptic site are each adjacent to an unusual polypurine tract (5'-A5G5) situated 40-50 bp distal to each terminal repeat. Removal of this tract or substitution of 3 bp within it abolishes splicing to the adjacent site. The normal chromosomal environment and the integrity of the eliminated sequence are not required for its removal. We believe the polypurine tract is a signal essential for excision of this sequence.  相似文献   

20.
Phenylalanine ammonia lyases (PALs) catalyse the regio- and stereoselective hydroamination of cinnamic acid analogues to yield optically enriched α-amino acids. Herein, we demonstrate that a bacterial PAL from Anabaena variabilis (AvPAL) displays significantly higher activity towards a series of non-natural substrates than previously described eukaryotic PALs. Biotransformations performed on a preparative scale led to the synthesis of the 2-chloro- and 4-trifluoromethyl-phenylalanine derivatives in excellent ee, highlighting the enormous potential of bacterial PALs as biocatalysts for the synthesis of high value, non-natural amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号