首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat-induced DNA cleavage by esperamicin antitumor antibiotics   总被引:1,自引:0,他引:1  
Y Uesawa  Y Sugiura 《Biochemistry》1991,30(38):9242-9246
Esperamicin A1 effectively breaks DNA strands upon heating at 50 degrees C. The preferential DNA cutting sites of heat-activated esperamicin A1 are random and clearly differ from those of thiol- or UV-light-mediated DNA breakage with esperamicin A1. The absence of heat-induced DNA cleavage by esperamicin Z and the induction of the DNA breakage by esperamicin A1 disulfide indicate that (1) the enediyne core plays a significant role in this DNA strand scission and (2) the DNA cutting with the heat-activated esperamicin antibiotics does not necessarily require a trisulfide trigger in the aglycon portion. On the basis of the present results, a probable mechanism for the heat-induced DNA cleavage of esperamicin A1 has been proposed.  相似文献   

2.
It is assumed that the efficient antitumor activity of calicheamicin gamma1 is mediated by its ability to introduce DNA double-strand breaks in cellular DNA. To test this assumption we have compared calicheamicin gamma1-mediated cleavage of cellular DNA and purified plasmid DNA. Cleavage of purified plasmid DNA was not inhibited by excess tRNA or protein indicating that calicheamicin gamma1 specifically targets DNA. Cleavage of plasmid DNA was not affected by incubation temperature. In contrast, cleavage of cellular DNA was 45-fold less efficient at 0 degrees C as compared to 37 degrees due to poor cell permeability at low temperatures. The ratio of DNA double-strand breaks (DSB) to single-stranded breaks (SSB) in cellular DNA was 1:3, close to the 1:2 ratio observed when calicheamicin gamma1 cleaved purified plasmid DNA. DNA strand breaks introduced by calicheamicin gamma1 were evenly distributed in the cell population as measured by the comet assay. Calicheamicin gamma1-induced DSBs were repaired slowly but completely and resulted in high levels of H2AX phosphorylation and efficient cell cycle arrest. In addition, the DSB-repair deficient cell line Mo59J was hyper sensitive to calicheamicin gamma. The data indicate that DSBs is the crucial damage after calicheamicin gamma1 and that calicheamicin gamma1-induced DSBs are recognized normally. The high DSB:SSB ratio, specificity for DNA and the even damage distribution makes calicheamicin gamma1 a superior drug for studies of the DSB-response and emphasizes its usefulness in treatment of malignant disease.  相似文献   

3.
Salzberg AA  Dedon PC 《Biochemistry》2000,39(25):7605-7612
Calicheamicin is a hydrophobic enediyne antibiotic that binds noncovalently to DNA and causes sequence-selective oxidation of deoxyribose. While the drug makes several base contacts along the minor groove, the diversity of binding-site sequences and the effects of DNA conformation on calicheamicin-induced DNA cleavage suggest that sequence recognition per se is not the primary determinant of target selection. We now present evidence that calicheamicin bends its DNA targets. Using a gel mobility assay, we observed that polymers of oligonucleotide constructs containing AGGA and ACAA binding sites for calicheamicin did not possess intrinsic curvature. Binding of calicheamicin epsilon, the aromatized form of the parent calicheamicin gamma(1)(I), to oligonucleotide constructs containing binding sites in phase with the helical repeat caused a shift to smaller circle sizes in T4 ligase-mediated circle formation assays, with a much smaller shift observed with constructs containing out-of-phase binding sites. It was also observed that binding of calicheamicin epsilon to a 273 bp construct with phased binding sites caused an increase in the molar cyclization factor, J, from 8 x 10(-8) to 9 x 10(-6) M. These results are consistent with DNA bending as part of an induced-fit mechanism of DNA target recognition and with the hypothesis that the preferred targets of calicheamicin, the 3' ends of oligopurine tracts, are characterized by unique conformational properties.  相似文献   

4.
The aglycon, or so-called 'warhead' portion, of several potent 10-membered ring enediyne antitumor antibiotics contain dienonecarbamate and enediyne chromophores in an unusual bicyclic ring structure in which these two subunits are essentially orthogonal to each other. The circular dichroism (CD) spectra of the calicheamicin, esperamicin, and shisijimicin A families, all of which contain this bicyclic ring system, exhibit a characteristic negative exciton coupled CD at about 310 and 270 nm. This signature CD feature suggested the absolute stereochemical relationship between these chromophores as originally assigned and which was later confirmed by stereospecific total synthesis. Because of the unique nature of this chromophoric interaction and the importance of using this CD spectral feature in the assignment of the absolute stereochemistry of other related enediynes, we report here simulations of the CD spectra of the calicheamicin aglycon A, and of two other truncated models, B and C, by using density functional theory (DFT) and the DeVoe coupled oscillator approach. The DFT calculations provide a strong theoretical basis that the planar enediyne chromophore alone gives a negligible CD contribution, while that coming from the twisted dienonecarbamate is much more substantial. However, the shape and the largest part of the intensity of experimental CD spectrum can only be reproduced when the two unsaturated moieties are simultaneously present. Thus, the exciton coupling between the two chromophores provides the most important contribution to the experimental CD spectrum of calicheamicin. This conclusion is in full agreement with the results from the DeVoe calculation.  相似文献   

5.

Background

Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.

Methodology/Principal Findings

To examine etoposide-induced DNA damage in more detail we compared the relative amount of SSBs and DSBs, survival and H2AX phosphorylation in cells treated with etoposide or calicheamicin, a drug that produces free DSBs and SSBs. With this combination of methods we found that only 3% of the DNA strand breaks induced by etoposide were DSBs. By comparing the level of DSBs, H2AX phosphorylation and toxicity induced by etoposide and calicheamicin, we found that only 10% of etoposide-induced DSBs resulted in histone H2AX phosphorylation and toxicity. There was a close match between toxicity and histone H2AX phosphorylation for calicheamicin and etoposide suggesting that the few etoposide-induced DSBs that activated H2AX phosphorylation were responsible for toxicity.

Conclusions/Significance

These results show that only 0.3% of all strand breaks produced by etoposide activate H2AX phosphorylation and suggests that over 99% of the etoposide induced DNA damage does not contribute to its toxicity.  相似文献   

6.
Ultraviolet radiation of the enediyne drugs is effective in causing nicks in supercoiled DNA. Of special interest is the fact that the observed nucleotide cleaving specificity for the UV light- and thiol-activated antibiotics was the same with esperamicin A1, but was different with neocarzinostatin. In addition to the preferred cutting of T and A bases, the light-activated neocarzinostatin attacked certain G bases which were rarely cleaved by the thiol-activated neocarzinostatin. It should be noted that these enediyne antibiotics lose the DNA breakage activity after light-exposure for 30 min.  相似文献   

7.
The esperamicins are members of a class of potent antitumor antibiotics that contain stained diacetylenic ring systems capable of forming DNA-cleaving diradicals upon reaction with thiols. Here we show that the diacetylenic ring core itself determines the sequence specificity for scission of duplex DNA): esperamicin A1, and three products of hydrolysis of the glycon, esperamicins C, D, and E, are found to retain a common sequence preference. The sugar residues exert a strong influence on the cleavage efficiency, presumably by interacting nonspecifically with DNA. The presence of a branch in the DNA is found locally to inhibit scission by esperamicins, and this effect is shown to be due to the core also.  相似文献   

8.
A Ichikawa  T Kuboya  T Aoyama  Y Sugiura 《Biochemistry》1992,31(29):6784-6787
We report here that the DNA strand scission by dynemicin A is not only sequence-specific but also conformation-specific. The salt-induced B----Z conformational transition dramatically enhanced the cleavage by dynemicin A in a B-Z junction region. By contrast, the bleomycin-Fe(II) complex, the elsamicin A-Fe(II) complex, and esperamicin A1 did not induce any preferential DNA cutting in such a DNA structure. The characteristic hyperreactivity of dynemicin A is observed in (dC-dG)8- and (dC-dG)12-inserted DNAs, but not in (dC-dG)5-inserted DNA. These results suggest value in the use of dynemicin A as proof of the existence of a B-Z junction in vivo and also may aid in understanding the structure of B-Z junctions.  相似文献   

9.
Summary Addition of cerulenin (0.25–1.0 mM) to cultures ofActinomadura verrucosospora before the onset of esperamicin synthesis inhibited the production of esperamicin A1 by the microorganism. This result indicates that esperamicin A1 is biosynthesized in part by the polyketide pathway. Addition of cerulenin to the cultures during the active production phase led to a net decrease in esperamicin A1 production. The14C-acetate labeling pattern of esperamicin A1 in the cultures with or without addition of cerulenin at the active production phase also demonstrated the instability of esperamicin A1 in the fermentation. This suggests that esperamicin A1 is unstable and degradation occurs during the active production phase. Addition of the neutral resin Diaion HP-20 (1%) to the fermentation enhanced the production of esperamicin A1 by 53%.  相似文献   

10.
We examined the effect of adriamycin on kinetics of DNA synthesis catalyzed by DNA polymerase purified from bacteriophage T4-infected Escherichia coli. Two distinct modes of enzyme inhibition occur: uncompetitive and competitive at "low" and "high" drug:DNA nucleotide molar ratios, respectively. Competitive inhibition is not observed unless an unblocked amino group is present on the sugar (daunosamine) moiety. A model is proposed to relate the enzyme inhibition kinetics to intercalative and ionic binding of adriamycin to DNA.  相似文献   

11.
The binding to DNA of a mixed function ligand (NETGA) is described, in which a potential intercalating group, an acridine moiety, is incorporated at the carboxyl terminus of the minor groove binding oligopeptide netropsin skeleton. Scatchard analysis of absorption data provided evidence of two modes of binding to DNA with K1 = 9.1 x 10(5) M-1 at low r values (0.003-0.1), and a binding site size n = 10, indicative of binding of both moeities. At high binding ratios (greater than 0.1), K2 = 0.9 x 10(5) M-1 and n = 5 corresponding to external binding. Complementary strand MPE footprinting on a pBR322 restriction fragment showed NETGA binds to 5'-AAAT like netropsin. It causes enhanced cleavage by MPE, particularly at G-C rich sequences and remote from the preferred binding sites. Viscometry measurements provided evidence for biphasic modes of the two binding portions of NETGA. Fluorescence polarization and linear dichroism measurements were in accord with distinct modes of interaction of the acridine (intercalation) and oligopeptide (minor groove binding) portions of NETGA. LD measurements on NETGA indicate that the oligopeptide moiety (netropsin-like) has an orientation typical of minor groove binders, whereas the degree of intercalation of the acridine group is decreased by association of the oligopeptide moiety.  相似文献   

12.
Dynemicin A, which is a hybrid antitumor antibiotic containing anthraquinone and enediyne cores, abstracts the C-1' hydrogen of DNA deoxyribose and then the damaged DNA leads to strand breaks with the formation of 5'- and 3'-phosphate termini. The lesions of C-4' hydrogen also occur at 3' side of G.C base pairs (i. e., 5'-CT and 5'-GA), leading to 5'-phosphate and 3'-phosphoglycolate termini or 4'-hydroxylated abasic sites. The C-1' hydrogen abstraction by dynemicin A is distinct from the preferential C-5' hydrogen abstraction of calicheamicin and neocarzinostatin.  相似文献   

13.
N Sullivan  L Lyne 《Mutation research》1990,245(3):171-175
We report the hypersensitivity of SV40-transformed fibroblasts derived from ataxia telangiectasia (AT) patients to calicheamicin gamma 1I. In common with other free-radical generating agents such as bleomycin and ionizing radiation, treatment with calicheamicin gamma 1I reveals AT derived lines to be 6-fold more sensitive to this drug when compared to controls. Furthermore, in common with ionizing radiation, AT cells did not show dose-dependent inhibition of DNA synthesis after treatment with calicheamicin gamma 1I.  相似文献   

14.
The efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, the nonhomologous end-joining process that represents the predominant repair pathway relies on the DNA-dependent protein kinase (DNA-PK) and the XRCC4-DNA ligase IV complex. Nonetheless, several in vitro and in vivo results indicate that mammalian cells use more than a single end-joining mechanism. While searching for a DNA-PK-independent end-joining activity, we found that the pretreatment of DNA-PK-proficient and -deficient rodent cells with an inhibitor of the poly(ADP-ribose) polymerase-1 enzyme (PARP-1) led to increased cytotoxicity of the highly efficient DNA double-strand breaking compound calicheamicin gamma1. In addition, the repair kinetics of the DSBs induced by calicheamicin gamma1 was delayed both in PARP-1-proficient cells pretreated with the PARP-1 inhibitor and in PARP-1-deficient cells. In order to get new insights into the mechanism of an alternative route for DSBs repair, we have established a new synapsis and end-joining two-step assay in vitro, operating on DSBs with either nuclear protein extracts or recombinant proteins. We found an end-joining activity independent of the DNA-PK/XRCC4-ligase IV complex but that actually required a novel synapsis activity of PARP-1 and the ligation activity of the XRCC1-DNA ligase III complex, proteins otherwise involved in the base excision repair pathway. Taken together, these results strongly suggest that a PARP-1-dependent DSBs end-joining activity may exist in mammalian cells. We propose that this mechanism could act as an alternative route of DSBs repair that complements the DNA-PK/XRCC4/ligase IV-dependent nonhomologous end-joining.  相似文献   

15.
16.
Cells, which lacked the activity of the nuclease Artemis, retained approximately 10% of unrepaired double strand breaks (DSBs) at later timepoints after ionizing radiation. Ionizing radiation induced hyperphosphorylation of Artemis mainly by ATM and in ATM deficient cells to a minor extent by DNA PK. After induction of DSBs with modified ends by a high dose of calicheamicin gamma1, Artemis was phosphorylated by DNA PK. The type of calicheamicin gamma1-induced DSBs is likely to represent a subclass of DSBs induced by ionizing radiation. DNA PK-dependent phosphorylation of Artemis after treatment with DSB inducing agents increased the cellular retention of Artemis, maintained its interaction with DNA ends and activated its endonucleolytic activity. The following model is suggested: ATM-dependent phosphorylation of Artemis after ionizing radiation could prevent DNA PK-dependent phosphorylation and activation of undesired endonucleolytic activity at DSBs, which do not require endonucleolytic processing by Artemis. The Artemis:DNA PK complex could be involved in the repair of DSBs, which carry modified ends and are refractory to repair by otherwise lesion specific enzymes because of the presence of an inhibitory lesion in the opposite strand.  相似文献   

17.
18.
The DNA-dependent protein kinase (DNA-PK) is a DNA-end activated protein kinase that is required for efficient repair of DNA double-strand breaks (DSBs) and for normal resistance to ionizing radiation. DNA-PK is composed of a DNA-binding subunit, Ku, and a catalytic subunit, DNA-PKcs (PRKDC). We have previously shown that PRKDC is activated when the enzyme interacts with the terminal nucleotides of a DSB. These nucleotides are often damaged when DSBs are introduced by anticancer agents and could therefore prevent recognition by DNA-PK. To determine whether DNA-PK could recognize DNA strand breaks generated by agents used in the treatment of cancer, we damaged plasmid DNA with anticancer drugs and ionizing radiation. The DNA breaks were tested for the ability to activate purified DNA-PK. The data indicate that DSBs produced by bleomycin, calicheamicin and two types of ionizing radiation ((137)Cs gamma rays and N(7+) ions: high and low linear energy transfer, respectively) activate DNA-PK to levels matching the kinase activation obtained with simple restriction endonuclease-induced DSBs. In contrast, the protein-linked DSBs produced by etoposide and topoisomerase II failed to bind and activate DNA-PK. Our findings indicate that DNA-PK recognizes DSBs regardless of chemical complexity but cannot recognize the protein-linked DSBs produced by etoposide and topoisomerase II.  相似文献   

19.
Aflatoxin B1 (AFB1), a potent mutagen and carcinogen, forms an adduct exclusively at the N(7) position of guanine, but the structure of this adduct in double stranded DNA is not known. Molecular modeling (using the program, PSFRODO) in conjunction with molecular mechanical calculation (using the program, AMBER) are used to assess the binding modes available to this AFB1 adduct. Two modes appear reasonable; in one the AFB1 moiety is intercalated between the base pair containing the adducted guanine and the adjacent base pair on the 5'-side in reference to the adducted guanine, while in the second it is bound externally in the major groove of DNA. Rotational flexibility appears feasible in the latter providing four, potential binding sites. Molecular modeling reveals that the binding sites around the reactive guanine in different sequences are not uniformly compatible for interaction with AFB1. As the sequence is changed, one particular external binding site would be expected to give a pattern of reactivities that is reasonably consistent with the observed sequence specificity of binding that AFB1 shows in its reaction with DNA (Benasutti, M., Ejadi, S., Whitlow, M. D. and Loechler, E. L. (1988) Biochemistry 27, 472-481). The AFB1 moiety is face-stacked in the major groove with its long axis approximately perpendicular to the helix axis. Favorable interactions are formed between exocyclic amino groups that project into the major groove on cytosines and adenines surrounding the reactive guanine, and oxygens in AFB1; unfavorable interactions involve van der Waals contacts between the methyl group on thymine and the AFB1 moiety. "Some of the sequence specificity of binding data can be rationalized more readily if it is assumed that 5'-GG-3' sequences adopt an A-DNA structure." Based upon molecular modeling/potential energy minimization calculation, it is difficult to predict how reactivity would change in different DNA sequences in the case of the intercalative binding mode; however, several arguments suggest that intercalation might not be favored. From these considerations a model of the structure for the transition state in reaction of AFB1 with DNA is proposed involving one particular external binding site.  相似文献   

20.
Recently cationic porphyrin-peptide conjugates were synthesized to enhance the cellular uptake of porphyrins or deliver the peptide moiety to the close vicinity of nucleic acids. DNA binding of such compounds was not systematically studied yet.We synthesized two new porphyrin-tetrapeptide conjugates which can be considered as a typical monomer unit corresponding to the branches of porphyrin-polymeric branched chain polypeptide conjugates. Tetra-peptides were linked to the tri-cationic meso-tri(4-N-methylpyridyl)-mono-(4-carboxyphenyl)porphyrin and bi-cationic meso-5,10-bis(4-N-methylpyridyl)-15,20-di-(4-carboxyphenyl)porphyrin. DNA binding of porphyrin derivatives, and their peptide conjugates was investigated with comprehensive spectroscopic methods. Titration of porphyrin conjugates with DNA showed changes in Soret bands with bathocromic shifts and hypochromicities. Decomposition of absorption spectra suggested the formation of two populations of bound porphyrins.Evidence provided by the decomposition of absorption spectra, fluorescence decay components, fluorescence energy transfer and induced CD signals reveals that peptide conjugates of di- and tricationic porphyrins bind to DNA by two distinct binding modes which can be identified as intercalation and external binding. Tri-cationic structure and elimination of negative charges in the peptide conjugates are preferable for the binding. Our findings provide essential information for the design of DNA-targeted porphyrin-peptide conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号