首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
With a view to using bile acids as shuttles for delivering platinum-related cytostatic drugs to liver tumors, a chenodeoxycholylglycinato(CDCG)-derivative of platinum(II) has been synthesized. The complex - named Bamet-M2- was chemically characterized by elemental analysis, FT-IR, NMR, FAB-MS, and UV spectroscopy. The results indicate the following composition: C26H42N2O5Cl2NaPt(II), the metal Pt(II) being bound to two Cl and one bidentate CDCG moiety, i.e., Na[Pt CDCG(N,O) Cl2]. The compound is highly soluble (up to 20 mM) in water and (up to 35 mM) in ethanol, methanol and DMSO. Hydrolysis was investigated because this is assumed to be an important step in intracellular activation and interaction with DNA of this type of compounds. The reaction kinetics of this complex in aqueous solution show unusual behaviour; the substitution process with the displacement of two Cl was almost instantaneous, and the resulting species were found to be very stable. Kinetic studies carried out in the presence of different NaCl concentrations (up to 500 mM) revealed similar fast and nonreversible aquations of Bamet-M2. This contrasts with the slow aquation of cisplatin in extracellular-line solutions (i.e., at high NaCl concentrations) as compared with fast hydrolysis in cells. This difference may partly account for the low cytostatic activity observed here for Bamet-M2 against several tumor cell-lines.  相似文献   

2.
The complexes cis-diamminebis-cholylglycinate (O,O') [Pt(II) C(52)H(90)N(4)O(12)Pt, for convenience referred to as Bamet-R1] and cis-diamminebis-ursodeoxycholate (O,O') Pt(II) (C(48)H(84)N(2)O(8)Pt, Bamet-UD2) were prepared. The structural integrity of the compounds was confirmed by elemental analysis, FT-IR, NMR, FAB-MS, and UV spectroscopies. The kinetic study of both compounds was accomplished by combining the conductivity measurement and those of the analysis of the electronic spectra in aqueous solution for NaCl concentrations of 4 mM (similar to cytoplasmatic concentration), 150 mM (similar to plasmatic concentration), and 500 mM. In water, the compound Bamet-R1 showed a half-life, t(1/2), of 3.0 h. This compound forms the chelate species through loss of a ligand, and the other one acts as a bidentate ligand. Ring opening in the presence of chloride ion was produced with a k(Cl)()-of 0.25 M(-)(1) h(-)(1). The half-life of Bamet-UD2 in aqueous solution was 3.2 h. However, since this species is not able to chelate and has a lower degree of solubility in the presence of chloride ion, its kinetic behavior was very different from that of the other compound. We consider this to be of great interest with regards to its cytostatic activity. All kinetic measurements were performed under pseudo-first-order conditions, and a pseudo-first-order behavior was found. The antitumoral effect of Bamet-UD2 on several cell lines derived from rat hepatoma, human hepatoma, mouse leukemia, and human colon carcinoma was found to be, in general, similar to that of cisplatin, but higher than that observed for Bamet-R1.  相似文献   

3.
The interaction of newly synthesised water-soluble planar complexes of general structure [Pt(diimine)(N,N-dihydroxyethyl-N'-benzoylthioureato)]+Cl- with DNA was investigated by means of DNA melting studies, CD spectroscopy, and DNA gel mobility studies. Addition of stoichometric amounts of [Pt(diimine)H2L-S,O]Cl complexes to polynucleotides caused a significant increase in the melting temperature of poly(dA-dT) and calf-thymus DNA, respectively, indicating that these complexes interacted with DNA and stabilised the double helical structure. The CD spectra confirmed the relatively strong binding of three related Pt(II) complexes ([Pt(2,2'-bipyridine)H2L-S,O]Cl, [Pt(4,4'-dimethyl-2,2'-bipyridine)H2L-S,O]Cl, and [Pt(1,10-phenanthroline)H2L-S,O]Cl), to DNA. Comparison with the published CD spectra of ethidium bromide/DNA complex suggests a similar intercalation mode of binding. cis-[(4,4'-di-tert-butyl-2,2'-bipyridyl)N,N-di(2-hydroxyethyl)-N'-benzoylthioureatoplatinum(II)] chloride, with its very bulky tert-butyl groups, did not intercalate into the polynucleotide double helix. In DNA mobility studies in the presence of the four [Pt(diimine)H2L-S,O]Cl complexes, only [Pt(2,2'-bipyridine)H2L-S,O]Cl affected the DNA mobility to any detectable extent. Finally, in vivo studies on the biological activity of the complexes, using an Escherichia coli DNA excision repair deficient uvrA mutant strain, indicated that only the [Pt(2,2'-bipyridine)H2L-S,O]Cl complex showed significant cellular toxicity and that this was, in part, linked to DNA damage.  相似文献   

4.
The complex trans-bis(dimethylsulfoxide)chloromethylplatinum(II) (1) is fairly soluble in water, where it undergoes multiple equilibria involving the formation of geometrically distinct [Pt(H(2)O)(DMSO)Cl(CH(3))] aqua-species. On reacting an aqueous solution of 1 with monodentate nitrogen donor ligands L, such as pyridines or amines, two well distinct patterns of behavior can be recognized: (i) a single stage fast substitution of one DMSO by the entering ligand, yielding a complex of the type trans(C,N)-[Pt(DMSO)(L)Cl(CH(3))] which contains four different groups coordinated to the metal and which undergoes a slow conversion into its cis-isomer, (ii) a double substitution affording cationic complex ions of the type cis-[Pt(L)(2)(DMSO)(CH(3))](+). When this latter reaction is carried out using sterically hindered ligands, slow rotation of the bulk ligand around the Pt[bond]N bond allows for the identification of head-to-head and head-to-tail rotamers in solution, through (1)H NMR spectrometry. The addition of chloride anion to 1 leads to the anionic species cis-[Pt(DMSO)Cl(2)(CH(3))](-), where a molecule of DMSO still remains coordinated to the metal center, despite its quite fast rate of ligand exchange (k(exch) with free DMSO=12+/-1 s(-1)). The reaction of complex 1 with bidentate ligands, such as ethylenediamine (en) or simple amino acids, leads to the cationic species [Pt(en)(DMSO)(CH(3))](+) or to the neutral [Pt(DMSO)(N[bond]O)(CH(3))], (where N[bond]-O[double bond]GlyO(-), AlaO(-)).  相似文献   

5.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

6.
The binding energies of nitrogen, oxygen, phosphorus, chlorine and Pt in several DNA - Pt (II) complexes are reported and discussed. The nitrogen band of DNA is slightly shifted upon complexation with Pt. Oxygen binding energies in the complexes studied clearly show that cis-Pt(NH3)2Cl2 forms a specific chelate N7(Gua) - O6 (Gua) with DNA as opposed to trans-Pt(NH3)2Cl2 and the other Pt compounds which react only with the N7(Gua) site of DNA.  相似文献   

7.
The reactions of Na2PtCl4 with pyridine-2-carbaldehyde and 2-acetyl pyridine N(4)-ethyl-thiosemicarbazones, HFo4Et and HAc4Et respectively, afforded the complexes [Pt(Fo4Et)Cl], [Pt(HFo4Et)2]Cl2, [Pt(Fo4Et)2] and [Pt(Ac4Et)Cl], [Pt(HAc4Et)2]Cl2 x 2H2O, [Pt(Ac4Et)2]. The new complexes have been characterized by elemental analyses and spectroscopic studies. The crystal structure of the complex [Pt(Ac4Et)Cl] has been solved. The anion of Ac4E coordinates in a planar conformation to the central platinum(II) through the pyridyl N, azomethine N and thiolato S atoms. Intermolecular hydrogen, non-hydrogen bonds, pi-pi and weak Pt-pi contacts lead to aggregation and a supramolecular assembly. The cytotoxic activity for the platinum(II) complexes in comparison to that of cisplatin and thiosemicarbazones was evaluated in a pair of cisplatin-sensitive and -resistant ovarian cancer cell lines A2780 and A2780/Cp8. The platinum(II) complexes showed a cytotoxic potency in a very low micromolar range and were found able to overcome the cisplatin resistance of A2780/Cp8 cells.  相似文献   

8.
D Payet  F Gaucheron  M Sip    M Leng 《Nucleic acids research》1993,21(25):5846-5851
Single- and double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adduct have been studied at two NaCl concentrations. In 50 mM and 1 M NaCl, the adducts within the single-stranded oligonucleotides are stable. In contrast, they are unstable within the corresponding double-stranded oligonucleotides. In 50 mM NaCl, the bonds between platinum and guanine or N-methyl-2,7-diazapyrenium residues are cleaved and subsequently, intra- or interstrand cross-links are formed as in the reaction between DNA and cis-DDP. In 1 M NaCl, the main reaction is the replacement of N-methyl-2,7-diazapyrenium residues by chloride which generates double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)Cl]+ adduct. The rates of closure of these monofunctional adducts to bifunctional cross-links have been studied in 60 mM NaClO4. Within d(TG.CT/AGCA), d(CG.CT/AGCG) and d(AG.CT/AGCT) (the symbol.indicates the location of the adducts in the central sequences of oligonucleotides), the half-lifes (t1/2) of the cis-[Pt(NH3)2(dG)Cl]+ adducts are respectively 12, 6 and 2.8 hr and the cross-linking reactions occur between guanine residues on the opposite strands. Within d(AG.TC/GACT), d(CG.AT/ATCG) and d(TGTG./CACA) or d(TG.TG/CACA) t1/2 are respectively 1.6, 8 and larger than 20 hr and the intrastrand cross-links are formed at the d(AG), d(GA) and d(GTG) sites, respectively. The conclusion is that the rates of conversion of cis-platinum-DNA monofunctional adducts to minor bifunctional cross-links are dependent on base sequence. The potential use of the instability of cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adducts is discussed in the context of the antisense strategy.  相似文献   

9.
Sato M  Kanamori T  Kamo N  Demura M  Nitta K 《Biochemistry》2002,41(7):2452-2458
Pharaonis halorhodopsin (phR), the light-driven chloride ion pump from Natronobacterium pharaonis with C-terminal histidine tag, was expressed in Escherichia coli cells. The protein was solubilized with 0.1% n-dodecyl beta-D-maltopyranoside and purified with a nickel column. Removal of Cl- from the medium yields blue phR (phR(blue)) that has lost Cl- near the chromophore. Addition of Cl- converts phR(blue) to a red-shifted Cl--bound form (phR(Cl)). Circular dichroic spectra of phR(blue) and phR(Cl) exhibited a bilobe in the visual region, indicating specific oligomerization of the phR monomers. The order of anion concentration which induced a shift from phR(blue) to phR(X) was Br- < Cl- < NO3- < N3-, which was the same as in the case of phR purified from N. pharaonis membranes. Chloride binding kinetics was measured by time-resolved absorption changes with stopped-flow rapid mixing. Rates of Cl- binding consisted of fast and slow components, and the amplitude of the fast component was about 90% of the total changes. The rate constant of the fast component at 100 mM NaCl at 25 degrees C was 260 s(-1) with an apparent activation energy of 35 kJ/mol. These values are in good agreement with the process of Cl- uptake in the photocycle (O --> hR' reaction) reported previously [Váró et al. (1995) Biochemistry 34, 14500-14507]. In addition, the Cl- concentration dependence on both rates was similar to each other. These observations suggest that the O-intermediate is similar to phR(blue) and that Cl- uptake during the photocycle may be ruled by a passive process.  相似文献   

10.
This paper reports on syntheses and characterization of chlorotribromo(O,O-n-butyl-ethylenediamine-N,N'-di-3-propanoate)platinum(IV) [II], dichlorodiiodo(O,O-n-butyl-ethylenediamine-N,N'-di-3-propanoate)platinum(IV) [III], and dichloro(O,O-n-butyl-ethylenediamine-N,N'-di-3-propanoate)platinum(II) [V] complexes, with the formulae [Pt(dbeddp)Br(3)Cl], [Pt(dbeddp)Cl(2)I(2)] and [Pt(dbeddp)Cl(2)], respectively. The complexes were characterized by elemental analysis, infrared, (1)H and (13)C NMR spectroscopy and electrospray mass spectrometry. In the aim to assess the selectivity in the antitumor action of these complexes, as well, as tetrachloro(O,O-n-butyl-ethylenediamine-N,N'-di-3-propanoate)platinum(IV) [I] and tetrachloro(O,O-n-pentyl-ethylenediamine-N,N'-di-3-propanoate)platinum(IV) [IV], the antiproliferative action of these compounds was determined to human adenocarcinoma HeLa cells, to human myelogenous leukemia K562 cells and to normal immunocompetent cells, i.e., on human peripheral blood mononuclear PBMC cells.  相似文献   

11.
A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, Kd, of the protein from cisplatin-modified DNA was estimated to be (1-20) X 10(-10) M. Protein binding is selective for DNA modified with cisplatin, [Pt(en)Cl2] (en, ethylenediamine), and [Pt(dach)Cl2] (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating [Pt(dien)Cl]Cl (dien, diethylenetriamine) complexes. The protein also does not bind to DNA containing UV-induced photoproducts. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin, as determined by gel mobility shifts with synthetic 110-bp duplex oligonucleotides; these modified oligomers contained five equally spaced adducts of either cis-[Pt(NH3)2d(GpG) or cis-[Pt(NH3)2d(ApG)]. Oligonucleotides containing the specific adducts cis-[Pt(NH3)2d(GpTpG)], trans-[Pt(NH3)2d(GpTpG)], or cis-[Pt(NH3)2(N3-cytosine)d(G)] were not recognized by the protein. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl2, CdCl2, CoCl2, or ZnCl2 and with 1 mM HgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of ammonium ion concentration and osmotic pressure on growth of Ureaplasma urealyticum type VIII was determined by using a well-buffered broth medium containing 10 mM urea. The addition of NH4Cl to the medium at concentrations up to 10 mM did not affect growth; however, addition of larger quantities progressively decreased both the specific growth rate (mu) and the maximum yield of the culture, with concentrations of 80 mM completely inhibiting growth. Addition of either 150 mM KCl or NaCl to the medium did not inhibit growth, indicating that the growth-inhibitory effect was specific to NH4+ and was neither a result of increased Cl- concentration nor increased osmotic pressure. Concentrations of NH4Cl as high as 100 mM did not affect growth of either Acholeplasma laidlawii or Mycoplasma hominis. U. urealyticum was more sensitive to osmotic pressure: osmotic pressures of 710 to 780 mosmol/kg (with KCl, NaCl, or sucrose) resulted in both a substantially lower growth rate and a 5- to 10-fold lower peak yield of organisms. Both A laidlawii and M. hominis were less sensitive to increased osmotic pressure.  相似文献   

13.
Three dipeptide complexes of the form K[Pt(IV) (dipep) Cl(OH)2] and four dipeptide complexes of the form K[Pt(IV)-(Hdipep)Cl2(OH)2] were newly prepared. The 195 Pt NMR peak of the K[Pt(IV) (dipep)Cl(OH)2] complexes appeared at about 1200 ppm and these chemical shifts were about 3150 ppm downfield compared with those of the K[Pt(II) (dipep) Cl] complexes. The chemical shifts of the K[Pt(IV) (Hdipep) Cl2 (OH)2] complexes were at about 900 ppm, i.e., about 3050 ppm downfield compared with those of the K[Pt(II) (Hdipep)Cl] complexes. The H[Pt(IV) (Hdigly) Cl2(OH)2] and K[Pt(IV) (Hdigly) Cl2(OH)2] complexes inhibited the growth of C. albicans at a more diluted concentration than cisplatin at 1 microgram/ml, but the platinum complexes only weakly inhibited the growth of these cells compared with the cisplatin-inhibited growth of Meth-A and Hep-2 cells at 10 micrograms/ml. These results suggested that the platinum complexes selectively inhibited the growth of fungal cells.  相似文献   

14.
Antibodies reactive to (1R,2R)-cyclohexanediamineplatinum(II)-DNA ((1R,2R)-cyclohexanediamine: 1R,2R-dach) adducts were elicited by immunization of rabbit with calf thymus DNA modified by Pt(1R,2R-dach)Cl2 at a ratio of bound platinum per nucleotide ((D/N)b) of 0.0335. In an enzyme-linked immunosorbent assay (ELISA), the binding of specific antibodies to Pt(1R,2R-dach)-DNA adduct (60 microliters of 1.235 x 10(-7) M Pt in each wells) on the assay plate was competitively inhibited by Pt(1R,2R-dach)-DNA adduct ((D/N)b = 0.0653) in the solution. Almost equal inhibition was observed with Pt(1S,2S-dach)-DNA ((D/N)b = 0.0412), an optical isomer of 1R,2R-dach. Pt(1R,2S-dach)-DNA ((D/N)b = 0.0371) and Pt(1R,3S-dach)-DNA ((D/N)b = 0.0281) in which the cyclohexane ring is stereochemically perpendicular to the platinum chelate plane, also inhibited antibody binding, but these adducts gave only incomplete inhibition at higher Pt-DNA adduct concentrations. Although Pt(1R,2R-dach)-d(GpG) and Pt(1R,2R-dach)(NH3)2 inhibited antibody binding, the affinity of the antibody for Pt(1R,2R-dach)(NH3)2 was lower than with Pt(1R,2R-dach)-DNA, and the inhibition behavior of Pt(1R,2R-dach)-d(GpG) was biphasic, i.e., at the lower concentration the inhibition curve was consistent with that of Pt(1R,2R-dach)-DNA, but at the higher concentration it shifted to that of Pt(1R,2R-dach)(NH3)2. The affinity of the antibody for cis-DDP was markedly lower than with Pt(1R,2R-dach)(NH3)2. These facts suggest that the antibodies may bind to the substituents (the platinum and its surroundings) of the various Pt complexes rather than the DNA structure altered by platinum binding.  相似文献   

15.
In immature neurones, the steady-state intracellular Cl- concentration [Cl-](i) is generally higher than expected for passive distribution, and this is believed to be due to Na(+)-K(+)-2Cl(-) co-transport. Here, we show that N2a neuroblastoma cells, incubated in HEPES-buffered NaCl medium maintain a [Cl-](i) around 60 mm, two- to threefold higher than expected for passive distribution at a membrane potential of - 49 mV. When the cells were transferred to a Cl(-) -free medium, [Cl-](i) decreased quickly (t(1/2) < 5 min), suggesting a high Cl- permeability. When the intracellular ATP concentration was reduced to less than 1 mm by metabolic inhibitors, the initial rate of (36) Cl- uptake was strongly inhibited (60-65%) while steady-state [Cl-](i) decreased to 24 mm, close to the value predicted from the Nernst equilibrium. Moreover, after reduction of [ATP](i) and [Cl-](i) by rotenone, the subsequent addition of glucose led to a reaccumulation of Cl-, in parallel with ATP recovery. Internal bicarbonate did not affect Cl- pumping, suggesting that Cl-/HCO(3)(-) exchange does not significantly contribute to active transport. Likewise, Na(+) -K(+) -2Cl(-) co-transport also appeared to play a minor role: although mRNA for the NKCC1 form of the co-transporter was detected in N2a cells, neither the initial rate of (36)Cl- uptake nor steady-state [Cl-](i) were appreciably decreased by 10 microm bumetanide or replacement of external Na(+) by choline. These results suggest that a highly active ATP-dependent mechanism, distinct from Na(+) -K(+) -2Cl(-) co-transport, is responsible for most of the inward Cl- pumping in N2a cells.  相似文献   

16.
We have studied the effects of diethyldithiocarbamate (DDTC) on the biotransformations of toxic doses of tetrachloro (d,l-trans)1,2-diaminocyclohexaneplatinum(IV) (tetraplatin) in Fischer 344 rats. In animals not treated with DDTC, tetraplatin was rapidly converted to dichloro(d,l-trans)1,2-diaminocyclohexaneplatinum(II) [PtCl2(dach)]. Subsequent biotransformations included the transient formation of the (d,l-trans)1,2-diaminocyclohexane-aquachloroplatinum(II) [Pt(H2O)(Cl)(dach)]+ complex, followed by formation of the platinum (Pt)-methionine and either Pt-cysteine or Pt-ornithine complexes. Significant amounts of free (d,l-trans) 1,2-diaminocyclohexane (dach) were observed in plasma as a result of intracellular trans-labilization reactions. DDTC caused a marked decrease in both total and protein-bound platinum in the circulation. A significant increase in the plasma concentration of free dach was also observed as a result of formation of the Pt(DDTC)2 complex. Some of the free dach could have arisen from intracellular reactions with DDTC, but the displacement of platinum from plasma proteins was more than sufficient to account for the increase in free dach in the circulation. DDTC treatment also decreased plasma concentrations of tetraplatin, PtCl2(dach), [Pt(H2O)(Cl) (dach)]+, the Pt-methionine complex, and one unidentified biotransformation product, but had no effect on the Pt-cysteine (or Pt-ornithine) complex. These effects of DDTC on protein-bound platinum and low-molecular-weight biotransformation products in plasma may contribute to the decrease in tetraplatin toxicity seen in DDTC-treated rats.  相似文献   

17.
The reaction products obtained from mixtures of 5'-GMP and platinum(IV) compounds with formula Pt(IV)Cl4(LL) and Pt(IV)Cl2(OH)2(LL) (LL representing two monodentate or one bidentate amine ligand) have been characterized by proton NMR spectroscopy. The amines used are NH3, H2N-CH2-CH2-NH2 (ethylenediamine, en), H2N-CH2-C(CH3)2-CH2-NH2 (2,2-dimethyl-1,3-diaminopropane, dmdap), and HC(CH3)2-NH2 (isopropylamine, ipa). Conditions varied during the reaction are pH (values of 4, 7, and 10), effect of visible light, and addition of vitamin C as a reducing agent. In all cases, the major product appeared to be the bis(5'-GMP)(LL)Pt(II) compound. The pH effect is limited; i.e., at pH 4 the reactions proceed somewhat faster than at neutral pH, while at pH 10 slower reactions occur. The illumination with visible light also induces only slight differences in the yields of the products. On the other hand, when vitamin C is present, the reactions proceed quite rapidly, resulting in the same main product but in higher yields (up to 80%). The facts that apparently no Pt(IV) adducts with 5'-GMP can be observed under these conditions and that the major products are bis(5'-GMP)(LL)Pt(II) compounds clearly support the hypothesis that the antitumor activity of certain platinum(IV) compounds is based upon in vivo reduction to the corresponding platinum(II) compounds.  相似文献   

18.
Ion-selective microelectrode recordings were made to assess a possible contribution of extracellular gamma-aminobutyric acid (GABA) accumulation to early responses evoked in the brain by anoxia and ischemia. Changes evoked by GABA or N2 in [K+]o, [Cl-]o, [Na+]o, and [TMA+]o were recorded in the cell body and dendritic regions of the stratum pyramidale (SP) and stratum radiatum (SR), respectively, of pyramidal neurons in CA1 of guinea pig hippocampal slices. Bath application of GABA (1-10 mM) for approximately 5 min evoked changes in [K+]o and [Cl-]o with respective EC50 levels of 3.8 and 4.1 mM in SP, and 4.7 and 5.6 mM in SR. In SP 5 mM GABA reversibly increased [K+]o and [Cl-]o and decreased [Na+]o; replacement of 95% O2 -5% CO2 by 95% N2 -5% CO2 for a similar period of time evoked changes which were for each ion in the same direction as those with GABA. In SR both GABA and N2 caused increases in [K+]o and decreases in [Cl-]o and [Na+]. The reduction of extracellular space, estimated from levels of [TMA+]o during exposures to GABA and N2, was 5-6% and insufficient to cause the observed changes in ion concentration. Ion changes induced by GABA and N2 were reversibly attenuated by the GABA(A) receptor antagonist bicuculline methiodide (BMI, 100 microM). GABA-evoked changes in [K+]o in SP and SR and [Cl-]o in SP were depressed by > or =90%, and of [Cl-]o in SR by 50%; N2-evoked changes in [K+]o in SP and SR were decreased by 70% and those of [Cl-]o by 50%. BMI blocked delta [Na+]o with both GABA and N2 by 20-30%. It is concluded that during early anoxia: (i) accumulation of GABA and activation of GABA(A) receptors may contribute to the ion changes and play a significant role, and (ii) responses in the dendritic (SR) regions are greater than and (or) differ from those in the somal (SP) layers. A large component of the [K+]o increase may involve a GABA-evoked Ca2+-activated gk, secondary to [Ca2+]i increase. A major part of [Cl-]o changes may arise from GABA-induced g(Cl) and glial efflux, with strong stimulation of active outward transport and anion exchange at SP, and inward Na+/K+/2Cl- co-transport at SR. Na+ influx is attributable mainly to Na+-dependent transmitter uptake, with only a small amount related to GABA(A) receptor activation. Although the release and (or) accumulation of GABA during anoxia might be viewed as potentially protectant, the ultimate role may more likely be an important contribution to toxicity and delayed neuronal death.  相似文献   

19.
Based on the ability of bile acids for vectorializing the cytostatic activity of other agents, we have designed and synthesized a new bile acid cholylglycinato Au(III) complex, named Bamet-A1. It has been characterized by means of EA (elemental analysis), FT-IR, NMR, FAB-MS (fast atom bombardment-mass spectrometry) and Vis-UV techniques. This characterization allowed us to propose a structure of the type [Au CG(O) CG(N,O) Cl] for the neutral complex, which has the composition C522H84N2O12AuCl and is very soluble in water, methanol, ethanol and DMSO (dimethylsulfoxide). The study in aqueous solution suggested a redox process for its transformation, which is accompanied by the appearance of colloidal gold phase. The behavior in 4 mM NaCl water (in order to mimic the cytoplasmatic fluid) was similar to that observed in water, while in a 150 mM NaCl (similar to extracellular fluid and serum), the apparition of a dark blue precipitate was observed. This complex displays fluorescence, which does not change when incubated with DNA obtained from E. coli. Bamet-A1 was found to inhibit the growth of a variety of cell lines. The cytostatic effect was mild against human hepatoma HepG2, mouse hepatoma Hepa 1-6, rat hepatoma McA RH-7777 and human colon adenocarcinoma LS-174T, and stronger against mouse sarcoma S180-II and mouse leukemia L-1210 cells. The appearance of colloidal Au during the process of hydrolysis under physiological conditions may explains the low cytostatic activity.  相似文献   

20.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号