首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of phenyl 2-acetamido-2-deoxy-4,6- O-(p-methoxybenzylidene)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide under halide ion-catalyzed conditions proceeded readily, to give phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (8). Mild treatment of 8 with acid, followed by hydrogenolysis, provided the disaccharide phenyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-β-d-glucopyranoside. Starting from 6-(trifluoroacetamido)hexyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranoside, the synthesis of 6-(trifluoroacetamido)hexyl 2-acetamido-2-deoxy-3-O-β-l-fucopyranosyl-β-d-glucopyranoside has been accomplished by a similar reaction-sequence. On acetolysis, methyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-α-d-glucopyranoside gave 2-methyl-[4,6-di-O-acetyl-1,2-dideoxy-3-O-(2,3,4-tri-O-acetyl-α-l-fucopyranosyl)-α-d-glucopyrano]-[2, 1-d]-2-oxazoline as the major product.  相似文献   

2.
Condensation of 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside (2) gave an α-d-linked disaccharide, further transformed by removal of the carbonyl and benzylidene groups and acetylation into the previously reported benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl)-α-d-glucopyranoside. Condensation of 3,4,6-tri-O-benzyl-1,2-O-(1-ethoxyethylidene)-α-d-glucopyranose or 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-glucopyranosyl bromide with 2 gave benzyl 2-acetamido-3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside. Removal of the acetyl group at O-2, followed by oxidation with acetic anhydride-dimethyl sulfoxide, gave the β-d-arabino-hexosid-2-ulose 14. Reduction with sodium borohydride, and removal of the protective groups, gave 2-acetamido-2-deoxy-3-O-β-d-mannopyranosyl-d-glucose, which was characterized as the heptaacetate. The anomeric configuration of the glycosidic linkage was ascertained by comparison with the α-d-linked analog.  相似文献   

3.
Condensation of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-galactopyranoside with 2,3,4-tri-O-acetyl-α-d-fucopyranosyl bromide in 1:1 nitromethane-benzene, in the presence of powdered mercuric cyanide, afforded benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4-tri-O-acetyl-β-d-fucopyranosyl)-α-d-galactopyranoside (3). Cleavage of the benzylidene group of 3 with hot, 60% aqueous acetic acid afforded diol 4, which, on deacetylation, furnished the disaccharide 5. Condensation of diol 4 with 2-methyl-(3,4,6-tri-O-acetyl-1,2-di-deoxy-α-d-glucopyrano)-[2,1-d]-2-oxazoline in 1,2-dichloroethane afforded the trisaccharide derivative (7). Deacetylation of 7 with Amberlyst A-26 (OH?) anion-exchange resin in methanol gave the title trisaccharide (8). The structures of 5 and 8 were confirmed by 13C-n.m.r. spectroscopy.  相似文献   

4.
The title disaccharide glycoside was synthesized by halide ion-promoted glycosidation, using methanol and the disaccharide bromide derived from methyl 2-azido-3-O-(2,3,4,6-tetra-O-benzoyl--d-galactopyranosyl)-4,6-O-benzylidene-2-deoxy-1-thio--d-galactopyranoside. This derivative in turn was prepared by silver triflate-promoted condensation of monosaccharide derivatives.  相似文献   

5.
Stereo- and regio-selective synthesis of 3-O-(2-acetamido-2-deoxy-3-O-β-d- galactopyranosyl-β-d-galactopyranosyl)-1,2-di-O-tetradecyl-sn-glycerol by use of 1,2-di-O-tetradecyl-3-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-sn-glycerol as a key intermediate is described.  相似文献   

6.
7.
《Carbohydrate research》1986,146(1):63-72
Partial oxyamination of 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside with chloramine-T and osmium tetraoxide gave 4,6-di-O-acetyl-2-deoxy-2-(p-toluene-sulfonamido)-α-d-mannopyranosyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside and its 3-deoxy-3-(p-toluenesulfonamido) regioisomer, each in 18–19% isolated yield. Osmium tetraoxide-catalyzed cis-hydroxylation of the remaining alkenic residue in these products led in high yields to the corresponding triols having the α-d-manno, α-d-manno configuration. These were N-desulfonylated (and simultaneously O-deacetylated) by the action of sodium in liquid ammonia to furnish 2-amino-2-deoxy-α-d-mannopyranosyl α-d-mannopyranoside and 3-amino-3-deoxy-α-d-mannopyranosyl α-d-mannopyranoside as new, trehalose-type amino sugars.  相似文献   

8.
9.
Abstract

In order to obtain a high degree of rigidity within the sugar moiety of nucleosides, some bicyclic pyrimidine nucleoside analogues where synthesized starting from cyclopentanone. The C-4′-substituent is fused to the C-3′-position via a propylene to give a [3.3.0]-bicyclic ring system.  相似文献   

10.
Abstract

In view of biological activities of tiazofurin and azido or aminosugar nucleosides, novel azido- and amino-substituted tiazofurin derivatives (1 and 2) were efficiently synthesized starting from 1,2;5,6-di-O-isopropylidene-D-glucose.  相似文献   

11.
12.
Diosgenyl 2-amino-2-deoxy-β-d-glucopyranoside is a semisynthetic saponin with antimicrobial and antitumor activities. To search for more effective analogues, N-aminoacyl and N-hydroxyacyl derivatives of this saponin were synthesized conventionally and with microwave assistance, and tested against the human pathogenic fungi and Gram-positive and Gram-negative bacteria. None of the tested compounds exhibit activity against Gram-negative bacteria. Almost all of the synthesized N-aminoacyl saponins exhibit antifungal activity and act effectively against Gram-positive bacteria, some better than the parent compound. The best acting saponins are the same size and possess sarcosine or l- or d-alanine attached to the parent glucosaminoside. Shorter and longer aminoacyl residues are less advantageous. d-Alanine derivative is the most effective against Gram positive bacteria. Structure-activity relationship (SAR) analysis indicates that the free α-amino group in aminoacyl residue is necessary for antimicrobial activities of the tested saponins. (N-Acetyl)aminoacyl and N-hydroxyacyl analogs are inactive. Measurements of the hemolytic activities demonstrate that the best acting saponins are not toxic towards human red blood cells.  相似文献   

13.
14.
Abstract

A strategy was developed for the synthesis of 3′-O-β-D-ribofuranosyl 2′-deoxythymidine derivatives using three different protecting groups, which allows the synthesis of a phosphoramidite building block for oligonucleotide synthesis. Likewise the 5′-O- and 5″-O-phosphorylated analogues were synthesized and their conformation was determined using NMR spectroscopy.  相似文献   

15.
The tetrasaccharide 2-(p-trifluoroacetamidophenyl)ethylO-α-l-fucopyranosyl-(1–3)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1–3)-O-β-d-galactopyranosyl-(1–4)-β-d-glucopyranoside was synthesized from thioglycoside intermediates. The key step was a methyl triflate promoted glycosidation of a lactose-derived 3′,4′-diol with a disaccharide thioglycoside to give a β(1–3)-linked tetrasaccharide derivative in 67% yield.  相似文献   

16.
Acetolysis of methyl 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranoside afforded 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-1,2,4,6-tetra-O-acetyl-d-galactopyranose (2). Treatment of 2 in dichloromethane with hydrogen bromide in glacial acetic acid gave 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)- 2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide (3). The α configuration of 3 was indicated by its high, positive, specific rotation, and supported by its 1H-n.m.r. spectrum. Reaction of 3 with Amberlyst A-26-p-nitrophenoxide resin in 1:4 dichloromethane-2-propanol furnished p-nitrophenyl 3-O-(2-acetamido-3,4,6- tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-β-d-galactopyranoside (7). Compound 7 was also obtained by the condensation (catalyzed by silver trifluoromethanesulfonate-2,4,6-trimethylpyridine) of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl bromide with p-nitrophenyl 2,4,6-tri-O-acetyl-β-d-galactopyranoside, followed by the usual deacylation-peracetylation procedure. O-Deacetylation of 7 in methanolic sodium methoxide furnished the title disaccharide (8). The structure of 8 was established by 13C-n.m.r. spectroscopy.  相似文献   

17.
A lactosaminyl donor, 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d- glucopyranosyl chloride, was synthesized in 10 steps, starting from 1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranose. Benzyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranoside was prepared by regioselective benzylation at the primary hydroxyl group by the stannyl method, and was used as a key intermediate.
  相似文献   

18.
D-Fructose affords on treatment with cyanamide 2-amino-beta-D-fructofuro[2',3':3,4]-oxazoline which is not isolated but transformed directly by the reaction with ethyl propiolate into O(2,3)-anhydro-2-[beta-D-fructofuranosyl]uracil. This compound is benzoylated to the 1',4',6'-tri-O-benzoyl derivative by the action of benzoyl cyanide and triethylamine. On treatment with hydrogen chloride/dimethylformamide, the latter intermediate is converted to the 1-[1,4,6-tri-O-benzoyl-3-chloro-3-deoxy-beta-D-psicofuranosyl]uracil 1',4',5'-tribenzoate from which the title nucleoside derivative is obtained by methanolysis.  相似文献   

19.
《Carbohydrate research》1985,140(2):299-311
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β-d-galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-d-galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α-d-galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号