首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The unprecedented rate of depletion of the stratospheric ozone layer will likely lead to appreciable increases in the amount of ultraviolet-B radiation (UV-B, 280–320 nm) reaching the earth's surface. In plants, photosynthetic reactions and nucleic acids in the mesophyll of leaves are deleteriously affected by UV-B. We used a fiber-optic microprobe to make direct measurements of the amount of UV-B reaching these potential targets in the mesophyll of intact foliage. A comparison of foliage from a diverse group of Rocky Mountain plants enabled us to assess whether the foliage of some plant life forms appeared more effective at screening UV-B radiation. The leaf epidermis of herbaceous dicots was particularly ineffective at attenuating UV-B; epidermal transmittance ranged from 18–41% and UV-B reached 40–145 m into the mesophyll or photosynthetic tissue. In contrast to herbaceous dicots, the epidermis of 1-year old conifer needles attenuated essentially all incident UV-B and virtually none of this radiation reached the mesophyll. Although the epidermal layer was appreciably thinner in older needles (7 y) at high elevations (Krumholtz), essentially all incident UV-B was attenuated by the epidermis in these needles. The same epidermal screening effectiveness was observed after removal of epicuticular waxes with chloroform. Leaves of woody dicots and grasses appeared intermediate between herbaceous dicots and conifers in their UV-B screening abilities with 3–12% of the incident UV-B reaching the mesophyll. These large differences in UV-B screening effectiveness suggest that certain plant life forms may be more predisposed than others to meet the challenge of higher UV-B levels resulting from stratospheric ozone depletion.  相似文献   

2.
In some plants, particularly herbaceous species, a considerable proportion of incident ultraviolet-B radiation (UV-B, 280-320 nm) penetrates into the leaf mesophyll where it is potentially damaging to nucleic acids and the photosyn-thetic machinery. We used optical techniques to look at the spatial variation in UV-B penetration through the epidermis of foliage of two herbaceous species (Chenopodium album and Smilacina stellata)and a conifer (Picea pun-gens). Measurements of UV-B penetration in intact foliage with a fibre-optic microprobe revealed that 300 nm radiation reached 161±36μm (mean±SD) into leaves of C. album, 154±40μm in S. stellata and 17±2μm in P. pungens, with epidermal transmittance being 39±14%, 55±19% and 0%, respectively. A thin polymer film was developed which fluoresced blue when irradiated by UV-B. Fresh epidermal leaf peels were placed over the film and irradiated with UV-B, and microscopic examination of the film from below allowed us to determine the spatial pattern of UV-B penetration through the epidermis. In herbaceous species, film fluorescence below cell walls, but not epidermal and guard cell protoplasts indicated that UV-B transmittance was much greater through anticlinal cell wall regions than protoplasts. Ultraviolet-B transmittance through large areas of epidermal cells could be induced by plasmolysis. Epidermal transmittance was also relatively high through stomal pores (and what appear to be nuclei in Smilacina), but relatively low through stomatal guard cells. Results from the fluorescing film technique were substantiated by direct measurements of UV-B transmittance through epidermal peels with a fibre-optic microprobe run paradermally along the bottom or inner side of irradiated peels. In Smilacina, we estimate that UV-B epidermal transmittance was up to 90% through anticlinal cell wall regions, but <10% through protoplast areas. In contrast to herbaceous species, we did not detect any UV-B transmittance through the epidermis of P. pungens with either the fluorescing film or the fibre-optic microprobe technique. The epidermis appears to be a much more spatially uniform UV-B filter in conifers than in these herbaceous species.  相似文献   

3.
The present study assesses light-induced variations in phenolic compounds in leaves of saplings of two co-occurring temperate species (Acer platanoides L., and Fraxinus excelsior L.) along a light gradient using a new non-invasive optical method (Dualex). The Dualex-derived UV absorbance of leaf epidermis (the sum of the adaxial and abaxial faces, AUV) increased significantly with increasing light in both species. AUV values were correlated with absorbance of the leaf extract at 305 nm and 375 nm (A305 and A375) in both species with similar slopes for both species. However, a large difference in intercept was observed between the two species when A305 was regressed against AUV. Similarly, AUV values were well correlated with the amount of phenolics in the leaf extracts assessed by the Folin-Ciocalteu method, but slopes were significantly different for the two species. Thus, the UV-A epidermal transmittance, despite being a reliable indicator of the UV-screening capacity of the leaf epidermis, cannot be used for any quantitative estimate of UV-B screening capacity or of energetic requirement for leaf construction without a species-specific calibration.  相似文献   

4.
In higher plants one of the important functions of the leaf epidermis is the effective screening of ultraviolet-B (280–320 nm, UV-B) radiation, due mostly to phenolic compounds. The assessment of the contribution of this function is necessary for an evaluation of the impact of increasing UV-B radiation. A method is proposed to estimate epidermal transmittance on the basis of chlorophyll fluorescence measurements. Fluorescence of chlorophyll induced by UV-A (320–400 nm, measuring beam centered at 366 nm, half band width 32 nm) or UV-B (measuring beam centered at 314 nm, half band width 18 nm) is compared to that induced by a blue-green measuring light (475 nm, half band width 140 nm). It is shown that the ratios of UV-and blue-green (BG)-induced fluorescence, F(UV-A)/F(BG) and F(UV-B)/F(BG), are relatively constant among leaf samples of various species ( Vicia faba, Spinacia oleracea, Rumex scutatus ) from which the epidermis was removed. In epidermis-free leaves no significant differences were found between adaxial and abaxial leaf sides, suggesting that leaf structure has negligible influence on the F(UV)/F(BG) ratios. On the other hand, fluorescence excitation ratios varied over a vast range when intact leaves from different species and habitats were investigated. Ratios were low in sun leaves and relatively high in shade- and greenhouse-grown leaves. By relating these results to those obtained with epidermis-free leaves, epidermal transmittances for UV-B radiation could be estimated, with values ranging between 1 and 45%. The data demonstrate a large adaptability of epidermal UV-A and UV-B transmittance in higher plants. The proposed method may prove a versatile and relatively simple tool for investigating epidermal UV transmittance complementing established methods.  相似文献   

5.
A recent review of climate patterns in Southern Germany has suggested significant increases in ultraviolet (UV) radiation due to decreases in cloud coverage and in cloud frequency which compound the effects of stratospheric ozone depletion. Whether such UV radiation increases result in UV damage of higher plant leaves depends partly on the capacity of UV-absorbing hydroxycinnamic acids and flavonoids located in the plant epidermis to screen out UV radiation. Epidermal UV screening is most often assessed from UV absorbance of whole-leaf extracts but in the present work, this method is critically examined. In grapevine (Vitis vinifera L.), hydroxycinnamic acid as well as mono-hydroxylated and ortho-dihydroxylated flavonoid concentrations increased in parallel with fluorometrically detected adaxial epidermal UV absorbance but only the latter class of flavonoids was associated with epidermal UV absorbance in barley (Hordeum vulgare L). For both species, curvilinear relationships between epidermal and total phenolic UV absorbance were established: initial slopes of the curves differed markedly between species. Modelling suggested that curvilinearity arises from UV-transparent epidermal areas located between vacuoles which are particularly UV-absorbing due to high levels of phenolics. The species-dependent differences were related to allocation of high amounts of phenolics in the mesophyll and abaxial epidermis in barley but not in grapevine. Both factors, optical heterogeneity and variable distribution of phenolics, severely restrict the use of phenolic absorbance to estimate true epidermal screening.  相似文献   

6.
Attenuation of UV radiation by plant cuticles from woody species   总被引:8,自引:0,他引:8  
Transmittance spectra of isolated plant cuticles were measured in the wavelength range from 270 to 600 nm. The cuticles were enzymatically isolated from the leaves of 27 species (26 evergreen or deciduous woody, one succulent herbaceous) and from four species of fruits. With the exception of subtropical and tropical species all plants were cultivated in the field. The cuticles of the species studied strongly attenuated ultraviolet (UV) radiation at wavelengths < 400 nm while they were practically translucent in the visible range. Relatively broad transmittance minima occurred at wavelengths from 280 to 320 nm (UV-B). Spectral transmittances at 300 nm ranged from 0.004 (Ilex aquifolium) to 0.50 (Prunus avium) for leaf cuticles and from 0.00023 (Cydonia oblonga) to 0.005 (Mains domestica) for fruit cuticles. The constitutive UV protection by cuticular pigments may be supplemented, to varying degrees, by pigments located in the epidermal cell wall and protoplast. Thus, it is concluded that only a small fraction of incident UV-B radiation may actually reach the sensitive tissues of the leaves of non-herbaceous species and of fruits.  相似文献   

7.
Chlorophyll fluorescence excitation techniques have been used in plant science for more than one decade to non-destructively estimate phenolic compounds in the epidermal cell layer. These techniques have been used here to evaluate the effect of different light intensities and spectral quality on the accumulation of ortho-dihydroxylated flavonoids in Phyllirea latifolia L., Myrtus communis L. and Ligustrum vulgare L. In a first experiment, chlorophyll fluorescence excitation spectra were measured (with a double arm optical fiber bundle connected to a spectrofluorimeter) on the adaxial and abaxial leaf surfaces of container-grown P. latifolia and M. communis exposed to 20% or 100% full sunlight. Differences in epidermal absorption spectra (referred to as epidermal absorption spectra throughout the paper) were then calculated from the relative chlorophyll fluorescence excitation spectra. This allowed comparing the content of UV-absorbing compounds between differentially irradiated leaves as well as between adaxial and abaxial epidermal layers. The absorption spectra were characterized by a band centered at 360–380 nm, which was greater in sun than in shade leaves and in the adaxial than in the abaxial surfaces, irrespective of species. Based upon HPLC-DAD and HPLC–MS analyses of leaf extracts and UV-spectral features of individual flavonoids, we conclude that quercetin, luteolin and myricetin derivatives were responsible for the observed light-induced changes in the spectral features of examined tissues.In a second experiment, we grew L. vulgare potted plants at 30% or 85% full sunlight in the presence or in the absence of UV radiation. We measured the absorbance characteristics at 370 nm of three leaf-pairs located in the apical portion of each shoot, using a portable fluorimetric sensor, the Multiplex®. This allowed estimating, non-destructively, an index closely related to the concentration of epidermal flavonols and flavones having an ortho-dihydroxyl substitution in the B-ring. This index was greater in leaves growing at 85% than at 30% sunlight, irrespective of UV irradiance. When plants acclimated for 3 weeks to 30% sunlight, in the presence or in the absence of UV irradiance, were transferred to 85% sunlight, the flavonoid index exponentially increased, reaching a maximum within 10 days.On the whole, our experiments conclusively show that light-responsive flavonoids are mostly the dihydroxy B-ring-substituted structures. These flavonoids are the most effective, among the wide array of flavonoid structures, in preventing the generation and scavenging reactive oxygen species. As a consequence, we suggest that flavonoids do not merely serve as UV-screening agents, but behave as ROS-detoxifying agents in the mechanisms of photoprotection.  相似文献   

8.
Grape (Vitis vinifera cv Silvaner) vine plants were cultivated under shaded conditions in the absence of ultraviolet (UV) radiation in a greenhouse, and subsequently placed outdoors under three different light regimes for 7 d. Different light regimes were produced by filters transmitting natural radiation, or screening out the UV-B (280-315 nm), or screening out the UV-A (315-400 nm) and the UV-B spectral range. During exposure, synthesis of UV-screening phenolics in leaves was quantified using HPLC: All treatments increased concentrations of hydroxycinnamic acids but the rise was highest, reaching 230% of the initial value, when UV radiation was absent. In contrast, UV-B radiation specifically increased flavonoid concentrations resulting in more than a 10-fold increase. Transmittance in the UV of all extracted phenolics was lower than epidermal UV transmittance determined fluorimetrically, and the two parameters were curvilinearly related. It is suggested that curvilinearity results from different absorption properties of the homogeneously dissolved phenolics in extracts and of the non-homogeneous distribution of phenolics in the epidermis. UV-B-dependent inhibition of maximum photochemical yield of photosystem II (PSII), measured as variable fluorescence of dark-adapted leaves, recovered in parallel to the buildup of epidermal screening for UV-B radiation, suggesting that PSII is protected against UV-B damage by epidermal screening. However, UV-B inhibition of CO(2) assimilation rates was not diminished by efficient UV-B screening. We propose that protection of UV-B inactivation of PSII is observed because preceding damage is efficiently repaired while those factors determining UV-B inhibition of CO(2) assimilation recover more slowly.  相似文献   

9.
We used the Mixta+ and mixta- lines of Antirrhinum majus as a model system to investigate the effects of epidermal cell shape and pigmentation on tissue optical properties in the visible and ultraviolet (UV) spectral regions. Adaxial epidermal cells of Mixta+ flowers have a conical-papillate shape; in the mixta- line the cells are slightly domed. Mixta+ cells contained significantly more anthocyanin and other flavonoids than mixta- cells when plants were grown under either high- or low-UV conditions. Mixta+ cells focused light (3.5-4.7 times incident) within their pigmented interiors, whereas mixta- cells focused light (2.1-2.7 times incident) in the unpigmented mesophyll. UV light penetrated the epidermis (commonly 20-50% transmittance at 312 nm) mainly through the unpigmented peripheral regions of the cells that were similar for the two lines, so that overall penetration through Mixta+ and mixta- epidermises was equal. However, maximum UV absorption in the central region of epidermal cells was slightly greater in Mixta+ than mixta-, and intact Mixta+ flowers reflected less light in the spectral regions with intermediate flavonoid absorbance. In both cases, about 50 to 75% of the difference could be attributed to cell shape and resulting changes in the optical pathlength or focusing.  相似文献   

10.
The depth of penetration of Ultraviolet-B (UV-B, 300 and 320 nm) and visible (680 nm) light was measured in foliage of Abies lasiocarpa and Picea engelmannii using a fibre-optic microprobe. Measurements were made on foliage at four times during development: needles were sampled from within expanding buds (in bud); within 72 h of emergence from the bud scales (emergent); from elongating branches (elongating); and from foliage that emerged the previous summer (mature). Light attenuation in pre-emergent needles of both species was steep and showed strong wavelength dependence. Short wavelength 300-nm light was attenuated strongly in the developing epidermal layer, but a significant proportion of this potentially damaging UV-B radiation penetrated into the mesophyll. For A. lasiocarpa and P. engelmannii, 99% attenuation of 300-nm light occurred at 51 and 96 μm, respectively, well within the mesophyll. At this stage, however, the bud scales were opaque to light below 400nm. As the epidermal cell walls and cuticle continued to develop and chlorophyll accumulated following emergence from the bud scales, light attenuation, particularly of UV-B radiation, increased. Although no UV-B is transmitted through the epidermis-hypodermis of mature needles, small but measurable quantities of 300- and 320-nm light were measured in the photosynthetic mesophyll of post-emergent and elongating needles. Thus, shortly after emergence from the bud scales in mid-June to mid-July, when incident UV doses are highest, absorption of UV-B radiation by potentially sensitive chromophores in the mesophyll may disrupt physiological and developmental processes in these species. Soluble UV-absorbing pigments accumulated during needle maturation for P. engelmannii but not A. lasiocarpa, suggesting that, for A. lasiocarpa at least, the development of effective UV screening properties in the epidermis may not be related to the induction of soluble flavonoids.  相似文献   

11.
T. A. Day 《Oecologia》1993,95(4):542-550
The ultraviolet-B radiation (UV-B, 300 nm) screening effectiveness of foliage of a diverse group of plants was examined by measuring epidermal transmittance and depth of penetration of UV-B with a fiberoptic microprobe. In addition, the concentration of UV-B-absorbing compounds and various anatomical characteristics were measured to assess whether they were useful predictors of UV-B screening. Sun foliage of naturally growing individuals of seven species were sampled in each of six life forms comprising two evergreen groups (gymnosperms and angiosperms) and four deciduous angiosperm groups (trees, shrubs and vines, herbaceous dicotyledons, and grasses). There was significant life-form variation in epidermal transmittance and depth of penetration of UV-B, concentration of UV-B-absorbing compounds (leaf-area basis), epidermal (including cuticle and hypodermis) thickness, and specific leaf area. Values of these parameters tended to be related to leaf longevity, with the most notable differences apparent between evergreen and deciduous species. The mean epidermal transmittance and depth of penetration of UV-B in foliage averaged 4% and 32 m in evergreens, compared to 28% and 75 m in deciduous species. These values are conservative estimates since the microprobe was oriented in foliage such that much of the side- and backscattered UV-B was ignored. The strongest predictors of epidermal transmittance and depth of penetration were epidermal thickness and the concentration of absorbing compounds, which averaged 32 m and 1.50 A cm–2 in evergreens, but only 19 m and 0.99 A cm–2 in deciduous foliage. However, the variation found in these relationships implies that additional factors warrant consideration in assessing UV-B-screening effectiveness. The relatively ineffective screening of UV-B by foliage of many deciduous plants suggests they may be more responsive to enhanced UV-B than evergreen species.  相似文献   

12.
Epidermally located UV-B absorbing hydroxycinnamic acid derivatives and flavonoids serve as a screen against potentially damaging UV-B (280-315 nm) radiation in higher plants. We investigated the effect of low temperature on epidermal screening as assessed by a chlorophyll fluorescence technique. The epidermal UV-transmittance of greenhouse-grown Vicia faba plants was strongly dependent on growth temperatures between 21 and 9 degrees C, with significant differences already between 21 and 18 degrees C. There was a good correlation between epidermal UV-A and UV-B absorbance and the absorbance of whole leaf extracts at the respective wavelengths. Whereas in Oxyria digyna and Rumex longifolius no temperature dependence of epidermal transmittance could be detected, it was confirmed for seven other crop plant species, including summer and winter varieties, and for Arabidopsis thaliana. Dicotyledoneous plants showed a stronger response than monocotyledoneous ones. In all investigated species, the response in the UV-A spectral region was similar to that in the UV-B, suggesting that flavonoids were the responsible compounds. In V. faba, mature leaves did not respond with a change in epidermal transmittance upon transfer from warm to cool conditions or vice versa, whereas developing leaves did acclimate to the new conditions. We conclude that temperature is an important determinant of the acclimation of epidermal UV transmittance to environmental conditions in many plant species. The potential adaptive value of this response is discussed.  相似文献   

13.
Trait predictions from leaf spectral properties are mainly applied to tree species, while herbaceous systems received little attention in this topic. Whether similar trait–spectrum relations can be derived for herbaceous plants that differ strongly in growing strategy and environmental constraints is therefore unknown. We used partial least squares regression to relate key traits to leaf spectra (reflectance, transmittance, and absorbance) for 35 herbaceous species, sampled from a wide range of environmental conditions. Specific Leaf Area and nutrient‐related traits (N and P content) were poorly predicted from any spectrum, although N prediction improved when expressed on a per area basis (mg/m2 leaf surface) instead of mass basis (mg/g dry matter). Leaf dry matter content was moderately to good correlated with spectra. We explain our results by the range of environmental constraints encountered by herbaceous species; both N and P limitations as well as a range of light and water availabilities occurred. This weakened the relation between the measured response traits and the leaf constituents that are truly responsible for leaf spectral behavior. Indeed, N predictions improve considering solely upper or under canopy species. Therefore, trait predictions in herbaceous systems should focus on traits relating to dry matter content and the true, underlying drivers of spectral properties.  相似文献   

14.
Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants.  相似文献   

15.
Abstract Mechanisms of plant protection and acclimation to potentially damaging solar ultraviolet-B (UV-B, 280–320 nm) radiation incident on the Earth's surface were examined in Oenothera stricta. Attenuation of this radiation in the upper leaf epidermis reduces the penetration of UV-B radiation to the mesophyll where damage to physiologically sensitive targets can occur. The epidermis is a highly selective radiation filter that can attenuate up to 95% of the incident UV-B radiation and yet transmit between 70% and 80% of the visible radiation. Exposure to UV-B radiation significantly reduced the degree of epidermal UV-B transmittance by as much as 33%. No significant reduction in epidermal transmittance of visible radiation was observed as a result of UV-B exposure. The plasticity in epidermal UV-B transmittance results from production of flavonoid and related phenolic compounds in the tissue. Absorbance of UV-B radiation in llavonoid extract solutions from epidermal and mesophyll tissues significantly increased by as much as 100% and 35%, respectively, after exposure to UV-B radiation. Photosynthetic rates of leaves exposed to UV-B radiation were not significantly reduced at dose rates representative of the radiation flux found in the habitat of this species, but significant photosynthetic depression was observed at dose rates that exceed the field UV-B flux. The phenotypic plasticity in epidermal UV-B transmittance resulting in decreased penetration of damaging UV-B radiation to the mesophyll may reduce the rate of damage to a level where repair mechanisms can keep pace with reduced injury.  相似文献   

16.
Cryptophytes are known to vary widely in coloration among species. These differences in color arise primarily from the presence of phycobiliprotein accessory pigments. There are nine defined cryptophyte phycobiliprotein (Cr-PBP) types, named for their wavelength of maximal absorbance. Because Cr-PBP type has traditionally been regarded as a categorical trait, there is a paucity of information about how spectral absorption characteristics of Cr-PBPs vary among species. We investigated variability in primary and secondary peak absorbance wavelengths and full width at half max (FWHM) values of spectra of Cr-PBPs extracted from 75 cryptophyte strains (55 species) grown under full spectrum irradiance. We show that there may be substantial differences in spectral shapes within Cr-PBP types, with Cr-Phycoerythrin (Cr-PE) 545 showing the greatest variability with two, possibly three, subtypes, while Cr-PE 566 spectra were the least variable, with only ±1 nm of variance around the mean absorbance maximum of 565 nm. We provide additional criteria for classification in cases where the wavelength of maximum absorbance alone is not definitive. Variations in spectral characteristics among strains containing the same presumed Cr-PBP type may indicate differing chromophore composition and/or the presence of more than one Cr-PBP in a single cryptophyte species.  相似文献   

17.
The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7° to approximately 80°. The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBEcat) and photokeratitis (UVBEpker). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.  相似文献   

18.
The epidermis of Argenteum mutant of Pisum sativum L. and Vicia faba L. was shown to be effective in protecting mesophyll photosynthesis from UV-C irradiation (peak 254 nm; 1.5 W m−2). These plants were chosen because it is easy to peel the epidermis from both sides of the leaf in Argenteum and the abaxial side in Vicia . Chlorophyll a fluorescence induction was decreased to the same extent by UV-C radiation in both leaf sides when the epidermis was removed. The fluorescence from the leaf with the epidermis inact was not affected. With irradiation of leaves with higher intensity (3.4 W m−2) of UV-C, the variable fluorescence was decreased by UV-C impinging on the abaxial side, but not the adaxial side in either of the plant species. A methanol extract from the mutant Pisum epidermis had a high absorbance in the UV region, and the absorbance was more than two-fold larger in adaxial epidermis than in abaxial epidermis. These results indicate that the epidermal layer, which contains substances that have high UV absorbance, protects mesophyll photosynthesis against UV radiation.  相似文献   

19.
Ultraviolet radiation screening compounds   总被引:13,自引:0,他引:13  
Amongst the diversity of methods used by organisms to reduce damage caused by ultraviolet (UV) radiation, the synthesis of UV-screening compounds is almost ubiquitous. UV-screening compounds provide a passive method for the reduction of UV-induced damage and they are widely distributed across the microbial, plant and animal kingdoms. They share some common chemical features. It is likely that on early earth strong selection pressures existed for the evolution of UV-screening compounds. Many of these compounds probably had other physiological roles, later being selected for the efficacy of UV screening. The diversity in physiological functions is one of the complications in studying UV-screening compounds and determining the true ecological importance of their UV-screening role. As well as providing protection against ambient UV radiation, species with effective screening may also be at an advantage during natural ozone depletion events. In this review the characteristics of a wide diversity of UV-screening compounds are discussed and evolutionary questions are explored. As research into the range of UV-screening compounds represented in the biosphere continues, so it is likely that the properties of many more compounds will be elucidated. These compounds, as well as providing us with insights into natural responses to UV radiation, may also have implications for the development of artificial UV-screening methods to reduce human exposure to UV radiation.  相似文献   

20.
Action spectra for photosynthesis in higher plants   总被引:5,自引:0,他引:5  
The action and quantum yield spectra of photosynthetic CO2 uptakeand the absorptance spectrum were determined for leaves of 33species of higher plant including 7 arbores over the wavelengthrange 344–758 nm, to interpret various curves of the spectralresponses. Almost the same curves either in the action or quantumyeild spectra were obtained for all the plants tested exceptin the ultraviolet (UV) and blue regions where the responserelative to the red maximum was significantly lower in the arboreousthan in herbaceous plants. The lower action in the UV and bluewas seen in leaves having higher absorptance in the green, anda very close correlation (r=–0.920) was found betweenthe ratio of action at 435 nm to that at 560 nm and the absorptanceat 560 nm (A560). These facts proved that the variation of actionspectra in the range from the UV to the green depended largelyon the differences in absorptance of leaves in the green, anda curve with a pronounced second peak in the blue could be obtainedwhen the A560 was less than about 0.6. (Received October 3, 1975; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号