首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the recent taxonomic revisions, over 40000 species of insects and acarines are parasites or micropredatory blood-suckers of mammals and birds. The largest fraction of them are micropredators and temporary or permanent ectoparasites, the minority being endoparasitic. Some arthropods (blood-sucking dipterans) use the host primarily as a food resource, whereas for others (many astigmatic mites) the host constitutes the entire environment. A number of life forms, or types of parasitism, have arisen in the insects and acarines in the course of their adaptive evolution to parasitism on terrestrial vertebrates. The term “type of parasitism” designates a set of convergently arising morpho-physiological and ecological adaptations (adaptive complexes), demonstrated by different arthropod taxa. A classification of the types of parasitism in arthropods is proposed based on their temporal, spatial, and trophic associations with vertebrates. The following seven types of parasitism are distinguished: micropredatory blood-suckers, nest ectoparasites (nidicoles), temporary ectoparasites with prolonged feeding, permanent ectoparasites, intracutaneous endoparasites, cavity endoparasites, and tissue endoparasites.  相似文献   

2.
This paper reports the prevalence of ectoparasitic arthropods in sampled groups of wild (n = 128; 16 species) and domestic (n = 69; 3 species) animals in the Las Merindades area of the Province of Burgos, Spain. The study revealed that wild animals were more infested and with a wider variety of ectoparasites than domestic animals. The parasitic prevalence was 67% for wild animals and 48% for livestock. In this way, 39% of animals were infected by ticks. Ixodes ricinus and Ixodes hexagonus were the most prevalent species whereas Dermacentor reticulatus showed affinity for the fox and wolf. The overall prevalence of parasitisation by fleas was 27%. Ctenophthalmus spp. showed the wider range host in wild animals, while Pulex irritans was the most frequent specie found. The parasitic prevalences by lice (Trichodectes melis, Trichodectes canis and Trichodectes mustelae) and by mite (Neotrombicula spp., Laelaps agilis and Sarcoptes scabiei) were 4% and 12%, respectively. In both cases only wild animals were found parasited.  相似文献   

3.
Vertebrates represent a resource frequently exploited by ectoparasites. But the ectoporosites themselves also represent a resource that can be exploited by specialized predators. Some o f these predators have been classified as ectoparasites, but in some cases the vertebrate blood in their crops comes from their blood-sucking prey. In fact, as Lance Durden explains, the assemblage o f arthropods that inhabit the vertebrate skin surface, or pelage, seems to show a complete spectrum of adaptations from predators to facultative and obligate blood-suckers, together with those feeding on other materials in this special habitat. The dynamics of their interactions are further complicated by responses of the host to the arthropods, and much further study is needed before the role o f predators in controlling ectoparasites can be clarified.  相似文献   

4.
Brood parasitic birds, their foster species and their ectoparasites form a complex coevolving system composed of three hierarchical levels. However, effects of hosts’ brood parasitic life‐style on the evolution of their louse (Phthiraptera: Amblycera, Ischnocera) lineages have never been tested. We present two phylogenetic analyses of ectoparasite richness of brood parasitic clades. Our hypothesis was that brood parasitic life‐style affects louse richness negatively across all avian clades due to the lack of vertical transmission routes. Then, narrowing our scope to brood parasitic cuckoos, we explored macroevolutionary factors responsible for the variability of their louse richness. Our results show that taxonomic richness of lice is lower on brood parasitic clades than on their nonparasitic sister clades. However, we found a positive covariation between the richness of cuckoos’ Ischnoceran lice and the number of their foster species, possibly due to the complex and dynamic subpopulation structure of cuckoo species that utilize several host species. We documented diversity interactions across a three‐level host parasite system and we found evidence that brood parasitism has opposing effects on louse richness at two slightly differing macroevolutionary scales, namely the species richness and the genera richness.  相似文献   

5.
吸虱是寄生于真兽类哺乳动物体表的专性吸血寄生虫,广布于世界各地。云南省已知吸虱昆虫9科13属44种,分别占中国已知吸虱科、属、种的81.82%,59.09%,45.83%。文章参考大量相关文献,从分类阶元、特有物种、动物地理区划和宿主动物4个方面分析云南省吸虱的物种多样性。云南省吸虱特有种有13种,占云南省已知吸虱种类的29.55%,27种为东洋种,15种为古北和东洋两界兼有种,广布种9种。吸虱在5个地理小区的分布,以横断山中部和横断山南部2个地理小区的吸虱物种多样性较高,其它3个区的物种多样性较低。相对于全国而言,云南省吸虱物种多样性较高,吸虱的宿主动物种类丰富。但蚤、恙螨和革螨等其它体表寄生虫相比较,兽类宿主动物体表吸虱的物种多样性明显低于其它体表寄生虫,1科(属)阶元的吸虱其宿主多为相对一致的1个科(属)动物阶元,反映了吸虱宿主特异性较高的事实,吸虱昆虫与其对应的宿主动物已经形成了比较稳定的"一对一"的寄生关系,这是吸虱昆虫与其宿主动物协同进化的生态学表现。  相似文献   

6.
Grooming behaviour by the host is increasingly recognized as an important determinant of feeding behaviour by blood-sucking arthropods. In general, grooming activity increases as a function of attack rate which, in some cases, provides a density-dependent limitation on the success of blood feeding. In turn this can lead to density dependence in population parameters of the arthropod, and can affect transmission of some arthropod-borne parasites in a similar way. But although insect-host interactions at this level are now being revealed in a variety of blood-sucking groups, such as mosquitoes, tsetse flies and triatomine bugs (see Box I), they are perhaps most clearly seen in, populations of ectoporositic insects such as lice, which ore permanently subject to defensive grooming behaviour by their hosts. As Durno Murray discusses here, host grooming has been a dominant factor in the evolution of lice, not only at the morphological level but also in terms of reproductive strategy.  相似文献   

7.
A study of the associations between three species of rodents in the Atlantic forest and their parasitic arthropods was undertaken at the Juréia-Itatins Ecological Station, located in the State of S?o Paulo, Southeastern Brazil, from March 1989 to February 1990. Individuals of three species, Oryzomys russatus, Proechimys iheringi and Nectomys squamipes were captured and examined for ectoparasites. Eleven species of parasitic arthropods were found, including four species of insects and seven of Acari. Parasitism intensity, phenology, and rainfall were positively correlated with the abundance of the ectoparasites and their hosts. The most abundant host was O. russatus (Muridae: Sigmodontinae), and the most common parasite on it was the laelapid mite Gigantolaelaps oudemansi. The cuterebrid Metacuterebra apicalis caused myiasis in O. russatus. A mutualistic association between the staphylinid beetle Amblyopinus sp. and its host P. iheringi (Echimyidae) was observed. The few N. squamipes captured had small numbers of ectoparasites.  相似文献   

8.
Preening is the principle behavioral defense used by birds to combat ectoparasites. Most birds have a small overhang at the tip of their bills that is used to shear through the tough cuticle of ectoparasitic arthropods, making preening much more efficient. Birds may also scratch with their feet to defend against ectoparasites. This is particularly important for removing ectoparasites on the head, which birds cannot preen. Scratching may be enhanced by the comb-like serrations that are found on the claws of birds in many avian families. We examined the prevalence and intensity of ectoparasites of barn owls (Tyto alba pratincola) in southern Idaho in relation to bill hook length and morphological characteristics of the pectinate claw. The barn owls in our study were infested with 3 species of lice (Phthiraptera: Ischnocera): Colpocephalum turbinatum , Kurodaia subpachygaster, and Strigiphilus aitkeni . Bill hook length was associated with the prevalence of these lice. Owls with longer hooks were more likely to be infested with lice. Conventional wisdom suggests that the bill morphology of raptors has been shaped by selection for efficient foraging; our data suggest that hook morphology may also play a role in ectoparasite defense. The number of teeth on the pectinate claw was also associated with the prevalence of lice. Owls that had claws with more teeth were less likely to be infested with lice, which suggests that larger pectinate claws may offer relatively more protection against ectoparasitic lice. Experiments that manipulate the bill hook and pectinate claw are needed to confirm whether these host characters are involved in ectoparasite defense. Finally, we recovered mammalian ectoparasites from 4 barn owls. We recovered species of mammalian lice (Phthiraptera:Anoplura) and fleas (Siphonaptera) that are commonly found on microtine rodents. The owls probably acquired these parasites from recently eaten prey. This represents 1 of the few documented cases of parasites "straggling" from prey to predator.  相似文献   

9.
Chewing lice (Phthiraptera) that parasitize the globally threatened swan goose Anser cygnoides have been long recognized since the early 19th century, but those records were probably biased towards sampling of captive or domestic geese due to the small population size and limited distribution of its wild hosts. To better understand the lice species parasitizing swan geese that are endemic to East Asia, we collected chewing lice from 14 wild geese caught at 3 lakes in northeastern Mongolia. The lice were morphologically identified as 16 Trinoton anserinum (Fabricius, 1805), 11 Ornithobius domesticus Arnold, 2005, and 1 Anaticola anseris (Linnaeus, 1758). These species are known from other geese and swans, but all of them were new to the swan goose. This result also indicates no overlap in lice species between older records and our findings from wild birds. Thus, ectoparasites collected from domestic or captive animals may provide biased information on the occurrence, prevalence, host selection, and host-ectoparasite interactions from those on wild hosts.  相似文献   

10.
Exchange of diseases between domesticated and wild animals is a rising concern for conservation. In the ocean, many species display life histories that separate juveniles from adults. For pink salmon (Oncorhynchus gorbuscha) and parasitic sea lice (Lepeophtheirus salmonis), infection of juvenile salmon in early marine life occurs near salmon sea-cage aquaculture sites and is associated with declining abundance of wild salmon. Here, we develop a theoretical model for the pink salmon/sea lice host–parasite system and use it to explore the effects of aquaculture hosts, acting as reservoirs, on dynamics. Because pink salmon have a 2-year lifespan, even- and odd-year lineages breed in alternate years in a given river. These lineages can have consistently different relative abundances, a phenomenon termed “line dominance”. These dominance relationships between host lineages serve as a useful probe for the dynamical effects of introducing aquaculture hosts into this host–parasite system. We demonstrate how parasite spillover (farm-to-wild transfer) and spillback (wild-to-farm transfer) with aquaculture hosts can either increase or decrease the line dominance in an affected wild population. The direction of the effect depends on the response of farms to wild-origin infection. If aquaculture parasites are managed to a constant abundance, independent of the intensity of infections from wild to farm, then line dominance increases. On the other hand, if wild-origin parasites on aquaculture hosts are proportionally controlled to their abundance then line dominance decreases.  相似文献   

11.
On mammals and birds communities of ectoparasites are present, which can include scores of ticks, mites and insects species. The parasitizing of arthropods terrestrial vertebrates appeared as far back a the Cretaceous period, and after 70-100 mil. years of the coevolution ectoparasites have assimilated all food resources and localities of the hosts' bodies. To the present only spatial and (to the less extent) trophic niches of parasitic insects, ticks and mites are studied completely enough. The main results these investigations are discussed in the present paper. A high abundance of the communities is reached because of their partition into the number of ecological niches. Host is complex of ecological niches for many ectoparasites species. These niches reiterate in the populations of a species closely related species of hosts and repeat from generation to generation. The each part of host (niche) being assimilated be certain parasite species is available potentially for other species. The partition of host into ecological niches is clearer than the structure of ecosystems including free-living organisms. A real extent of the ecological niches occupation by different species of ticks, mites and insects is considerably lower than a potential maximum. The degree of ecological niches saturation depends on the history of the coevolution of parasites community components, previous colonization be new ectoparasite species and many other ecological factors affecting host-parasite system. The use of the ecological niche conception in parasitology is proved to be rather promising. Ectoparasites communities because of their species diversity, different types of feeding and a number of habitats on host represent convenient models and study of them can contribute significantly to the developmeht of the general conception of ecological niche.  相似文献   

12.
Compared with Europe and the Americas, the ectoparasites of African birds are poorly understood, despite the avian fauna being relatively well known. Notably, previous studies documenting the host associations and genetic diversity of parasitic chewing lice of southern African birds have been limited in geographic and taxonomic scope. Recent field expeditions exploring the avian diversity in South Africa facilitated an opportunity to obtain louse specimens from a taxonomically diverse host assemblage. This study is the first to investigate avian louse host associations and diversity across a large portion of South Africa encompassing several distinct habitat types, while incorporating molecular genetic data (from portions of the mitochondrial COI and nuclear EF‐1α genes) for ectoparasite phylogenetic analyses. From 1105 South African bird individuals and 170 species examined for lice, a total of 105 new louse–host associations were observed. Morphological and genetic examination of lice with these new host associations reveals a maximum of 66 louse species new to science. Results of this study support the observation that examining museum specimens is a useful way to investigate louse diversity and host associations.  相似文献   

13.
吸虱是寄生于真兽类哺乳动物体表的专性吸血寄生虫,广布于世界各地.我国已知吸虱11科22属96种.分别占世界已知科、属、种的64.71%、45.83%、17.14%.从分类阶元、特有物种、动物地理区划和宿主动物4个方面分析了我国吸虱的物种多样性.中国特有种吸虱27种.中国横跨古北和东洋两界,吸虱分布以东洋界和占北界共有属级分布型最丰富,有13属29种;其次为东洋界特有分布型,有6属41种,种类丰富;古北界特有分布型仅2属,但种类丰富,有24种.吸虱在7个地理区分布,以华中区、华南区、西南区3个地理区的吸虱物种多样性较高,其它4个区的物种多样性较低.我国吸虱物种多样性较为丰富,吸虱的物种分布受宿主动物地域分布的影响较大.吸虱的宿主动物种类丰富,但宿主动物体表吸虱的物种多样性低,一科(属)阶元的吸虱其宿主多为相对应的一科(亚科)动物阶元,反映了吸虱宿主特异性较高的事实,是吸虱与其宿主协同进化的生态学表现.  相似文献   

14.
Several genera of marine dinoflagellates contain species that have evolved parasitic life styles. Dinoflagellate infections have been reported for a wide range of host organisms including sarcodines. ciliates, free-living dinoflagellates, various invertebrates, and a few vertebrates. Some dinoflagellates even parasitize other parasitic dinoflagellates. Most species are obligately parasitic and rely on heterotrophy as their sole means of nutrition; however, some are mixotrophic, as they possess chloroplasts during part or all of their life cycle. Many are ectoparasites that use highly specialized structures to attach to their host and feed, while others are intracellular parasites that feed by osmotrophy. Parasitic dinoflagellates often have adverse effects on their host that can lead to reproductive castration or death. The ecological importance of parasitic dinoflagellates is particularly evident during epidemic outbreaks that cause mass mortality of host organisms. Species that infect fish can pose threats to aquaculture. while other species can make commercially important crustacea unpalatable. In the planktonic realm, parasitic dinoflagellates influence the structure and function of the microbial food web. They compete with copepods and other grazers by utilizing ciliates as hosts and can stimulate rapid recycling of nutrients by causing the decline of toxic and non-toxic red tides.  相似文献   

15.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

16.

Background  

Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships.  相似文献   

17.
The author has reviewed the available literature on the changes in the physiological state and behaviour of hosts of vector-borne diseases agents during the before-host-changing and during host-changing periods. For vertebrates the effect of the agent is reflected in the rise of body temperature, reduction of locomotor activity and protective reactions, thrombocytopenia and vasodilation, accompanied by periodical concentration of the agent in the peripheral part of the vascular system. All this provides a successful search for a host, a source of infection, and obtaining the agent by blood-sucking vector. For arthropods the effect of the agent is reflected in changes in the vector behaviour as during the host-searching period so in an attempt for bloodsucking. Alimentary tract obstruction with an agent blocking, phagoreceptors block (eructation type of infection), inhibition of saliva ferments activity (saliva type of transmission) result in the prolongation of the feeding period and rise of agent hit probability. The last three types of effect on the feeding mechanism increase the possibility of death of an infected individual and decrease the chance of progeny preservation.  相似文献   

18.
Human infections come from two main sources. Our 'family heirlooms' have co-evolved with the host as we diverged from the common ancestor of humans and chimpanzees, and these are often vertically transmitted. Our 'new acquisitions' come from cross-species infections, and these are typically horizontally transmitted. Compared with other apes, naked apes harbor a larger variety of pathogens, acquired from the domesticated and commensal non-primate species which share our habitat, as well as from exotic species. Thus we are nouveaux riches in our collection of infections or 'metagenome' and this is reviewed with particular reference to retroviruses. Nakedness poses a challenge to ectoparasites which is discussed in relation to the origin and evolution of human lice from those of the great apes. As humans have acquired infections horizontally from our closest living relatives, the chimpanzee and the gorilla, might we also have exchanged pathogens with other hominid species?  相似文献   

19.
The risk of parasitism is considered to be a general cost of sociality and individuals living in larger groups are typically considered to be more likely to be infected with parasites. However, contradictory results have been reported for the relationship between group size and infection by directly transmitted parasites. We used independent contrasts to examine the relationship between an index of sociality in rodents and the diversity of their macroparasites (helminths and arthropods such as fleas, ticks, suckling lice and mesostigmatid mites). We found that the species richness of directly transmitted ectoparasites, but not endoparasites, decreased significantly with the level of rodent sociality. A greater homogeneity in the biotic environment (i.e. a reduced number of cohabiting host species) of the more social species may have reduced ectoparasites' diversity by impairing ectoparasites transmission and exchange. Our finding may also result from beneficial outcomes of social living that include behavioural defences, like allogrooming, and the increased avoidance of parasites through dilution effects.  相似文献   

20.
Brood parasitic birds offer a unique opportunity to examine the ecological and evolutionary determinants of host associations in avian feather lice (Phthiraptera). Brood parasitic behaviour effectively eliminates vertical transfer of lice between parasitic parents and offspring at the nest, while at the same time providing an opportunity for lice associated with the hosts of brood parasites to colonize the brood parasites as well. Thus, the biology of brood parasitism allows a test of the relative roles of host specialization and dispersal ecology in determining the host-parasite associations of birds and lice. If the opportunity for dispersal is the primary determinant of louse distributions, then brood parasites and their hosts should have similar louse faunas. In contrast, if host-specific adaptations limit colonization ability, lice associated with the hosts of brood parasites may be unable to persist on the brood parasites despite having an opportunity for colonization. We surveyed lice on four brood parasitic finch species (genus Vidua), their estrildid finch host species, and a few ploceid finches. While Brueelia lice were found on both parasitic and estrildid finches, a molecular phylogeny showed that lice infesting the two avian groups belong to two distinct clades within Brueelia. Likewise, distinct louse lineages within the amblyceran genus Myrsidea were found on estrildid finches and the parasitic pin-tailed whydah (Vidua macroura), respectively. Although common on estrildid finches, Myrsidea lice were entirely absent from the brood parasitic indigobirds. The distribution and relationships of louse species on brood parasitic finches and their hosts suggest that host-specific adaptations constrain the ability of lice to colonize new hosts, at least those that are distantly related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号