首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of angiotensin converting enzyme (ACE) in cell lysate of cultured human umbilical vein endothelial cells (HUVEC) after a 24-hour incubation with 10(-3) and 10(-4)M of paraquat (PQ) was decreased. However, LDH released into the culture medium of HUVEC during the 24-hour incubation with PQ was not increased. Many investigators show that the change in serum ACE activity reflects the impairment of vascular endothelial cells. We showed in this report that ACE was decreased even at an early stage of endothelial injury induced by PQ, when LDH release is not yet increased.  相似文献   

2.
Angiotensin converting enzyme (ACE) of vascular endothelial cells is suggested to control vascular wall tonus through the conversion of angiotensin I (AI) to angiotensin II (AII) and the degradation of bradykinin. To obtain more insight into the pathophysiological significance of ACE of vascular endothelial cells, we studied the regulation of ACE produced by cultured human umbilical vein endothelial cells (EC). Phorbol 12-myristate 13-acetate (PMA) increased the cellular and medium ACE activity, accompanied by a marked morphological change in EC. N'-O'-dibutylyladenosine 3';5'-cyclic monophosphate (db-cAMP) increased only the cellular ACE activity and not the medium ACE activity. The effect of isoproterenol with 0.1mM theophylline mimicked that of db-cAMP. These findings suggest that PMA and cAMP-related agents participate in the control of vascular wall tonus through the positive regulation of ACE produced by vascular endothelial cells.  相似文献   

3.
Recent reports have shown a decrease in blood pressure associated with the consumption of flavanol-containing foods. However, the mechanism behind this effect is not yet known. Previously we demonstrated that the flavanol epicatechin and its related oligomers, the procyanidins, inhibit angiotensin I converting enzyme (ACE) activity in vitro. In this study, we further characterized epicatechin monomer, dimer, tetramer and hexamer ACE inhibitory effect, by performing fluorescence quenching and kinetic assays, using angiotensin I as substrate. Assessment of ACE activity in cultured human umbilical vein endothelial cells (HUVEC) indicated that the tetramer was the most active inhibitor decreasing the formation of angiotensin II by 52% (P<0.001). When ACE activity was measured using isolated rabbit lung ACE, dimer, tetramer and hexamer inhibited angiotensin II production at IC(50) values of 97.0, 4.4, and 8.2 microM, respectively. The quenching of ACE tryptophan fluorescence was assayed to evaluate the molecular interaction between ACE and procyanidins. The hexamer was the most active quencher decreasing ACE fluorescence by 56%, followed by the tetramer and the dimer, decreasing ACE fluorescence by 37% and 36%, respectively. ACE activity was evaluated in the presence of different concentrations of the ACE activator chloride ion (Cl(-)). Increased Cl(-) concentrations reduced IC(50) values for the dimer and tetramer. Finally, ACE inhibition was determined in the presence of different albumin concentrations. The presence of albumin did not reverse the ACE inhibition by dimer and tetramer, but decreased hexamer inhibition by 65%. In summary, the inhibitory effect of procyanidins on ACE and the extent of this inhibition were largely dependent on procyanidin structure. ACE inhibition by procyanidins in vivo might provide a mechanism to explain the benefits of flavonoid consumption on cardiovascular diseases.  相似文献   

4.
Induction of vascular endothelial cells with pituitary fibroblast growth factor (FGF) provoked an increase in angiotensin converting enzyme activity. The stimulatory effect of FGF on ACE activity was dose-dependent (ED50 = 1.0 ng/ml). Our results suggest a possible role for pituitary FGF in regulation of ACE production in vascular endothelial cells.  相似文献   

5.
The modulation of angiotensin converting enzyme (ACE) levels was studied using fucosterol, one of phytosterols, in cultured bovine carotid endothelial cells. Addition of fucosterol to the culture medium resulted in the decrease of ACE activity of endothelial cells; however, fucosterol did not directly inhibit ACE activity. Dexamethasone elevated the levels of ACE in normal cells, but this effect was not seen in the fucosterol-treated cells. Receptor assays showed that the amount of glucocorticoid receptors in fucosterol-treated cells decreased to an undetectable level. These results indicate that fucosterol lowers the ACE levels on the endothelial cells by inhibiting the synthesis of glucocorticoid receptors involved in the regulation of ACE levels.  相似文献   

6.
Incubation of cultured bovine pulmonary artery endothelial cells with 200 microM of 3-isobutyl-1-methylxanthine (IBMX) for 24 hr produced a five- to tenfold increase in cellular angiotensin converting enzyme activity (ACE) above that of untreated control cells. A lesser increase was observed in medium ACE. Other methylxanthines produced a similar, but less marked, effect. The elevation of ACE seemed to require de novo protein synthesis since it was reduced by 0.1 microgram/ml cycloheximide. Elevation of cellular cAMP was detected at 30 min after introduction of IBMX, then rapidly returned to control levels at 1 hour, while elevation in cellular ACE at 24 hr required contact with IBMX for at least 2 hr. Hence, the transient elevation in cAMP is unlikely to be the cause of the elevation of ACE. Phorbol ester and synthetic diacyl glycerol OAG, activators of protein kinase C, did not elevate ACE. Indomethacin, at a concentration known to inhibit cyclooxygenase activity, had no effect on the elevation of ACE. The elevation of ACE by IBMX was not affected by the calcium channel blocker verapamil or the calcium chelator EGTA. In contrast, the effect of IBMX was totally abolished by the calmodulin inhibitors trifluoperazine and calmidazolium. The data show that IBMX elevates endothelial cell ACE and suggest that the elevation is mediated by a calcium-calmodulin complex. The studies demonstrate a novel effect of methylxanthines on endothelial cells in culture.  相似文献   

7.
8.
Saijonmaa O  Nyman T  Kosonen R  Fyhrquist F 《Cytokine》2000,12(8):1253-1256
OBJECTIVE: To examine the role of oncostatin M (OSM) in the regulation of angiotensin converting enzyme (ACE) in endothelial cells. METHODS: Cultured endothelial cells were incubated with OSM (25-200 pM) for 24 h. Incubations were performed without or with the tyrosine kinase inhibitor, herbimycin (87 nM), or the selective MAP kinase kinase inhibitor, PD98059 (50 microM). ACE amount in intact endothelial cells was measured by an inhibitor binding assay and ACE mRNA levels by RNase protection assay. RESULTS: OSM caused a dose dependent increase in ACE amount and increased the expression of ACE mRNA. The stimulatory effect of OSM was inhibited by pretreatments with herbimycin or PD98059. CONCLUSIONS: OSM induced ACE in cultured HUVECs. Tyrosine kinase and MAPK activation were probably involved in ACE induction. Local induction of ACE by OSM in the vascular wall may be a consequence of inflammatory processes leading to locally increased production of angiotensin II and breakdown of bradykinin.  相似文献   

9.
We measured angiotensin I-converting enzyme (ACE) activity in a human endothelial cell to characterize the intracellular signal pathways of Klotho. COS-1 cells transfected with naked mouse membrane-form klotho plasmid DNA (pCAGGS-klotho) translated proper Klotho protein. This translated Klotho protein was secreted into the culture medium. Furthermore, ACE activity in human umbilical vein endothelial cells (HUVEC) was upregulated when HUVEC were co-cultured with COS-1 cells that were pre-transfected with pCAGGS-klotho. The conditioned medium from COS-1 cells pre-transfected with pCAGGS-klotho also dose-dependently upregulated ACE in HUVEC. In addition, the conditioned medium induced time- and dose-dependent enhancement of cAMP production in HUVEC. Rp-cAMP, an inhibitor of cAMP-dependent protein kinase A (PKA), inhibited the upregulation of ACE by Klotho protein. Our results suggest that mouse membrane-form Klotho protein acts as a humoral factor to increase ACE activity in HUVEC via a cAMP-PKA-dependent pathway. These findings may provide a new insight into the mechanism of Klotho protein.  相似文献   

10.
Confluent monolayers of bovine aortic endothelial and smooth muscle cells were exposed to 0-5.0 Gy of 60Co gamma rays. From 0 to 72 hr after irradiation, the monolayer and culture medium were analyzed for cell (nuclei) number, DNA and protein content, the activities of angiotensin converting enzyme (ACE), lactate dehydrogenase (LDH), and superoxide dismutase (SOD), and LDH isoenzyme profile. Irradiated endothelial cells exhibited a time- and dose-dependent increase in cell detachment, decreased DNA and protein content and reduced ACE active per attached cell, increased LDH and SOD activities per microgram of DNA, and increased LDH activity in the culture medium. The latter was accompanied by a shift from LDH 1 to LDH 4 and 5. The release of LDH activity, observed after 0.5 Gy, was the most sensitive endothelial response, and occurred independent of or preceding cell detachment. Vascular smooth muscle cells contained two to three times more SOD activity than did endothelial cells and exhibited no significant responses to 5.0 Gy.  相似文献   

11.
Angiotensin-converting enzyme (ACE) plays a major role in the metabolism of bradykinin, angiotensin, and neuropeptides, which are all implicated in inflammatory airway diseases. The activity of ACE, which is localized on the luminal surface of endothelial cells (EC), has been well documented in pulmonary EC; however, few data exist regarding the relative activity of ACE in the airway vasculature. Therefore, we measured ACE activity in cultured EC from the sheep bronchial artery and bronchial mucosa (microvascular) and compared it with pulmonary artery EC. The baseline level of total ACE activity (cellular plus secreted) was significantly greater in bronchial microvascular EC (1.24 +/- 0.24 mU/106 cells) compared with bronchial artery EC (0.59 +/- 0.15 mU/106 cells; P < 0.05) and comparable to pulmonary artery EC (1.12 +/- 0.14 mU/106 cells; P > 0.05). Measured ACE activity secreted into culture medium for each cell type was 64-74% of total activity and did not differ among the three EC types (P = 0.17). Hydrocortisone (10 microg/ml; 48-72 h) treatment resulted in a significant increase in ACE activity in bronchial EC. Likewise, TNF-alpha (0.1 ng/ml) treatment markedly increased ACE activity in all cell lysates (P < 0.05). We confirmed the importance of ACE activity in vivo since, at the highest dose of bradykinin studied (10-8 M), bronchial artery pressure at constant flow showed a greater decrease after captopril treatment (36% before vs. 60% after; P = 0.05). These results demonstrate high ACE expression of the bronchial microvasculature and suggest an important regulatory role for ACE in the metabolism of kinin peptides known to contribute to airway pathology.  相似文献   

12.
Angiotensin converting enzyme 2 (ACE2) is a terminal carboxypeptidase, which cleaves single terminal residues from several bioactive peptides such as Angiotensin II (AngII). Many investigations indicated that ACE2 functions in angiotensin system and plays a crucial role in inflammatory lung diseases. However, the mechanism behind the involvement of ACE2 in inflammatory lung disease has not been fully elucidated. In this study, BEAS-2B cells were treated with gradient concentration of AngII and lipopolysaccharide (LPS) to induce inflammatory condition. Quantitative RT-PCR was performed to detect the level of ACE2 and miR-143-3p. Western blotting and immunofluorescence assays were performed to measure the expression of related proteins. The levels of inflammatory cytokines and cell viability were respectively measured by ELISA and CCK-8 kits. And ACE2 activity was detected by corresponding commercial kits. Bioinformatics methods were employed to predict the potential microRNA targeting ACE2, which was then confirmed by dual luciferase reporter assay. The results showed that ACE2 expression and activity were time-dependently decreased in LPS group for the first 12 h, after which this tendency was reversed. AngII addition enhanced these effects, compared with LPS group. Additionally, the lowest ACE2 activity level was found in both LPS and AngII + LPS groups at 6 h. The number of nuclei and the ACE2 expression were decreased in LPS groups at 6 h and further reduced by addition of AngII, detected by immunofluorescence. Moreover, ACE2 was validated to be a direct target of miR-143-3p. Pretreatment of AngII and LPS regulated the activity of ACE2, increased the expression of proinflammatory cytokines and cell apoptosis and regulated the expression of Bax, Bcl-2 and cleaved caspase-3 in BEAS-2B cells, which could be reversed by transfecting miR-143-3p inhibitor. The results collectively suggest that AngII promotes LPS-induced inflammation by regulating miR-143-3p in BEAS-2B cells. Therefore, miR-143-3p is considered a potential molecular target for the treatment of lung inflammation.  相似文献   

13.
We first aimed to test the effect of anti-inflammatory drugs, etanercept and dexamethasone sodium phosphate (DSP), on the expression of inducible inflammatory signaling molecules (the bradykinin [BK] B(1) receptor [B(1)R], cyclooxygenase [COX]-2) in lipopolysaccharide (LPS)-treated rabbits. Preliminary experiments mostly based on a novel cellular model, rabbit dermis fibroblasts, showed that etanercept inhibited TNF-alpha-induced B(1)R expression ([(3)H]Lys-des-Arg(9)-BK binding), but that DSP also inhibited cytokine-induced B(1)R upregulation with less selectivity. LPS (100 microg/kg i.v.) induced the expression of the B(1)R (aortic contractility ex vivo, mRNA in hearts) and COX2 (immunoblots, heart extracts). However, the function of the BK B(2) receptor was unchanged (jugular vein contractility ex vivo). DSP pre-treatment profoundly reduced the induction of the B(1)R and COX2 whereas etanercept significantly inhibited only COX2 expression. The second aim was to verify whether chronic angiotensin converting enzyme (ACE) blockade in rabbits would induce B(1)R expression, as reported in other species. 14-Day enalapril oral dosing, but not treatment with the angiotensin receptor antagonist losartan, significantly increased aortic contractions mediated by B(1)Rs, however much less than LPS. Enalapril treatment did not increase COX2 expression but increased the ex vivo relaxation of the mesenteric artery mediated by endogenous prostaglandins. Chronic ACE inhibition recruits inflammatory signaling systems.  相似文献   

14.
Angiotensin converting enzyme (ACE) inhibitors are a widely used intervention for blood pressure control, and are particularly beneficial in hypertensive type 2 diabetic subjects with insulin resistance. The hemodynamic effects of ACE inhibitors are associated with enhanced levels of the vasodilator bradykinin and decreased production of the vasoconstrictor and growth factor angiotensin II (ATII). In insulin-resistant conditions, ACE inhibitors can also enhance whole-body glucose disposal and glucose transport activity in skeletal muscle. This review will focus on the metabolic consequences of ACE inhibition in insulin resistance. At the cellular level, ACE inhibitors acutely enhance glucose uptake in insulin-resistant skeletal muscle via two mechanisms. One mechanism involves the action of bradykinin, acting through bradykinin B(2) receptors, to increase nitric oxide (NO) production and ultimately enhance glucose transport. A second mechanism involves diminution of the inhibitory effects of ATII, acting through AT(1) receptors, on the skeletal muscle glucose transport system. The acute actions of ACE inhibitors on skeletal muscle glucose transport are associated with upregulation of insulin signaling, including enhanced IRS-1 tyrosine phosphorylation and phosphatidylinositol-3-kinase activity, and ultimately with increased cell-surface GLUT-4 glucose transporter protein. Chronic administration of ACE inhibitors or AT(1) antagonists to insulin-resistant rodents can increase protein expression of GLUT-4 in skeletal muscle and myocardium. These data support the concept that ACE inhibitors can beneficially modulate glucose control in insulin-resistant states, possibly through a NO-dependent effect of bradykinin and/or antagonism of ATII action on skeletal muscle.  相似文献   

15.
16.
Inhibitors of metallopeptidases may represent new alternatives in the treatment of cardiovascular disease. Recent investigations have linked the hypotensive properties of the metalloendopeptidase 3.4.24.15 (MEP 24.15) inhibitor c-phenylpropyl-alanyl-alanyl-phenylalanyl-para-aminobenzoate (cFP-A-A-F-pAB) to the attenuation of bradykinin metabolism. However, since angiotensin converting enzyme (ACE) is widely recognized to contribute to the metabolic clearance of bradykinin, we characterized the specificity of cFP-A-A-F-pAB towards ACE. We also determined whether cFP-A-A-F-pAB inhibits the conversion of angiotensin I (Ang I) to Ang II by pulmonary ACE. The ACE activity toward the synthetic substrate hippuryl-histidine-leucine (Hip-His-Leu) was measured in vitro using both a purified lung preparation and pooled rat serum. The ACE activity was inhibited at increasing concentrations of the MEP 24.15 inhibitor. Kinetic analysis revealed that cFP-A-A-F-pAB competitively inhibited pulmonary ACE with a Ki of 0.19 microM. In rat serum, cFP-A-A-F-pAB also competitively inhibited ACE. The hydrolysis of Ang I into Ang II by pulmonary ACE was inhibited to a similar extent by both cFP-A-A-F-pAB and the ACE inhibitor MK 422. These findings are the first to show that the MEP 24.15 inhibitor cFP-A-A-F-pAB also inhibits ACE. We suggest that the reported hypotensive actions of cFP-A-A-F-pAB may be due to the reduction in both bradykinin metabolism and Ang II generation arising from the blockade of ACE.  相似文献   

17.
Preincubation of human umbilical vein endothelial cell (EC) monolayers with 1 ng to 10 micrograms/ml lipopolysaccharide (LPS) increased the binding of T lymphocytes to EC. The effect was maximal at LPS concentrations of 0.1 to 10 micrograms/ml, and occurred with LPS derived from Escherichia coli (serotypes 0111:B4 and 0127:B8), Shigella flexneri (serotype 2a), Serratia marcescens (serotype 0:3), and Yersinia entercolitica (serotype 0:3). The increased binding appeared to be mediated primarily through an action on EC; preincubation of T cells rather than EC with LPS did not lead to enhanced binding. The onset of enhanced binding was very rapid, being observed after 2 to 3 min of preincubation and becoming maximal after 1 hr. EC were unresponsive to LPS after fixation with 2% paraformaldehyde-L-lysine-periodate and also when the LPS was incubated with EC at 4 degrees C. Enhanced binding was seen with lipid A and with LPS from Salmonella minnesota Re 595 (mainly lipid A) and was abolished by conjugation with polymyxin B. The observed increase in the binding of lymphocytes to EC exposed to LPS suggests that the lymphocytopenia induced by endotoxemia may result from augmentation of the adherence of lymphocytes to altered endothelium.  相似文献   

18.
It has been recently proposed that the second extracellular loop of the human bradykinin (BK) B1 receptor (B1R) contains a conserved HExxH motif also present in peptidases possessing a Zn2+ prosthetic group, such as angiotensin converting enzyme (ACE), and that ACE inhibitors directly activate B1R signaling in endothelial cells. However, the binding of ACE inhibitors to the B1Rs has never been directly evaluated. Information about binding of a radiolabeled inhibitor to natural or recombinant ACE in intact cells (physiologic ionic composition) was also collected. We used the tritiated form of an ACE inhibitor previously proposed to activate the B1R, enalaprilat, to address these questions using recombinant human B1Rs and naturally expressed or recombinant ACE. [3H]Lys-des-Arg9-BK bound to the human recombinant B1Rs with high affinity (KD 0.35 nM) in HEK 293a cells. [3H]Enalaprilat (0.25-10 nM) did not bind to cells expressing recombinant human B1R, but bound with a subnanomolar affinity to recombinant ACE or to naturally expressed ACE in human umbilical vein endothelial cells. The radioligand was further validated using a binding competition assay that involved unlabeled ACE inhibitors or their prodrug forms in endothelial cells. Membranes of HEK 293a cells that expressed B1Rs did not hydrolyze hippuryl-glycylglycine (an ACE substrate). Enalaprilat did not stimulate calcium signaling in HEK 293a cells that expressed B1Rs. A typical ACE inhibitor did not bind to nor stimulate the human B1Rs; nevertheless, several other indirect mechanisms could connect ACE inhibition to B1R stimulation in vivo.  相似文献   

19.
Levels of angiotensin converting enzyme (ACE) in cultured bovine pulmonary artery endothelial cells treated with dexamethasone, aldosterone, 3,3',5'-triiodo-L-thyronine, Ca2+ ionophore, 3-isobutyl-1-methylxanthine, dibutyryl cAMP and forskolin were quantitated by an enzyme linked immunosorbent assay (ELISA). The configuration for the ELISA consisted of purified bovine lung ACE adsorbed to a solid phase competing with endothelial cellular ACE for a limited amount of anti-ACE immunoglobulin. ACE-IgG complex on the solid phase was detected by goat anti-rabbit IgG-alkaline phosphatase conjugate with enzymatic activity measured by p-nitrophenylphosphate as substrate. This ELISA detected ACE with a sensitivity of 32 ng/ml cellular ACE. Elevation in cellular ACE catalytic activity as measured by fluorescent assay of detergent extracts from bovine endothelial cells corresponded well with an increase in ACE protein as determined by the ELISA. These results provide direct evidence that increases in catalytic activity of ACE produced in endothelial cells by a variety of agents result from enhancement of the synthesis of ACE protein.  相似文献   

20.
Serum angiotensin converting enzyme activities were significantly increased in 26 untreated hyperthyroid patients (20.3 +/- 5.4 U/ml; P less than 0.001) compared with healthy control subjects (13.1 +/- 2.3 U/ml). In 12 patients a significant fall in enzyme activities was observed after treatment compared with pretreatment serum ACE levels (P less than 0.001). Eight patients with hypothyroidism (15.7 +/- 5.1 U/ml) and 11 athyreotic patients, totally thyroidectomized for well-differentiated thyroid cancer, showed no significant differences in serum ACE activities (14.3 +/- 2.2 U/ml) compared with control subjects. After thyroid hormone supplementation a significant increase in serum ACE activity (P less than 0.05) was found in the athyreotic patients. Addition of increasing amounts of L-thyroxine to a serum sample of an athyreotic patient showed no significant effect on ACE activity in vitro. We suggest that the elevated serum ACE activity in hyperthyroidism is not from the thyroid gland, but represents a direct effect of thyroid hormone on ACE synthesis and/or release from endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号