首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulatory role of histone modifications with respect to the structure and function of chromatin is well known. Proteins and protein complexes establishing, erasing and binding these marks have been extensively studied. RNAs have only recently entered the picture of epigenetic regulation with the discovery of a vast number of long non-coding RNAs. Fast growing evidence suggests that such RNAs influence all aspects of histone modification biology. Here, we focus exclusively on the emerging functional interplay between RNAs and proteins that bind histone modifications. We discuss recent findings of reciprocally positive and negative regulations as well as summarize the current insights into the molecular mechanism directing these interactions. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.  相似文献   

2.
Transvection, nuclear structure, and chromatin proteins   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

3.
4.
5.
6.
7.
Although it has been known for several years that most nuclear-encoded RNAs and some patients can be exported from the nucleus to the cytoplasm, the molecular mechanisms of these transport processes have been poorly understood. Recently, signals that can induce the rapid and active nuclear export of macromolecules have been identified in the HIV-1 Rev protein, the inhibitor of cAMP-dependent protein kinase (PKI) and the hnRNP A1 protein. Thus, nuclear export appears to be mechanistically similar to nuclear import that it requires specific signal-receptor systems.  相似文献   

8.
Stimulation of transcription of chromatin by specific small nuclear RNAs   总被引:1,自引:0,他引:1  
M Ringuette  W C Liu  E Jay  K K Yu  M O Krause 《Gene》1980,8(2):211-224
  相似文献   

9.
Pathways for the nuclear transport of proteins and RNAs   总被引:20,自引:0,他引:20  
The nuclear pore complex catalyses the import and export of both proteins and RNAs. The molecular mechanisms of RNA and protein translocation through the nuclear pore are likely to be similar; however, their signals and targeting apparatus may differ. Recent insights into RNA transport have come from studies of kinetic control mechanisms and the preconditions for translocation that include processing, RNP assembly, and a targeting function for 5' caps.  相似文献   

10.
11.
12.
13.
14.
15.
The paper presents the results on the influenza virus proteins (only HA, M and NS) contained in the amino acid sequence regions similar to that of the VIP. These data may be important as there is similarity in pathological reactions between VIP and influenza virus.  相似文献   

16.
17.
Electron microscopy after negative staining of SA11-infected cell homogenates revealed that most of the viral particles are associated with membrane-like material. Many of the particles seemed to be fully enveloped in a membrane. This association could also be detected by the observed cosedimentation of viral proteins and cell membranes. Pulse-chase experiments showed that viral glycoproteins rapidly associate with membranes, whereas most of the structural proteins appearing in the soluble fraction immediately after the pulse were slowly chased into the membrane fraction. The membranes could be further fractionated into at least four fractions differing in density and containing a different distribution of viral proteins. Also, the distribution of label into each of these membrane fractions changed after long chase periods. The inhibition of glycosylation with tunicamycin yielded viral particles without an outer layer, but did not affect the described association with membranes. The possible relationship of this finding to the maturation of the virion is discussed.  相似文献   

18.
19.
Zona-free hamster eggs have been fertilized in vitro with boar spermatozoa in a medium enriched by arginine-3H and the sites of localization of newly synthesized arginine-3H–labeled proteins have been investigated using fine-structure autoradiography. It was confirmed that such proteins are synthesized during fertilization and that they accumulate to a notable degree in decondensing sperm chromatin as well as in the chromatin of the female pronucleus and also of the second polar body. A similar process did evidently take place also in defective pronuclei, characterized by a core of a still condensed chromatin and by remaining nuclear membrane. In such male pronuclei the highest concentration of the label was seen just on the border of the condensed chromatin, on the expected site of nuclear protein exchange. It is supposed that, at least in this experimental system, any morphologically detectable sperm decondensation is accompanied immediately by a shift from sperm basic nuclear proteins to other nuclear proteins.  相似文献   

20.
An origin recognition complex (ORC) consisting of six polypeptides has been identified as a DNA replication origin-binding factor in Saccharomyces cerevisiae. Homologues of ORC subunits have been discovered among eukaryotes, and we have prepared monoclonal antibodies against a human homologue of ORC1 (hORC1) to study its localization in human cells. It was thus found to associate with nuclei throughout the cell cycle and to be resistant to nonionic detergent treatment, in contrast to MCM proteins, which are other replication factors, the association of which with nuclei is clearly dependent on the phase of the cell cycle. A characteristic feature of hORC1 is dissociation by NaCl in a narrow concentration range around 0.25 M, suggesting interaction with some specific partner(s) in nuclei. Nuclease treatment experiments and UV cross-linking experiments further indicated interaction with both nuclease-resistant nuclear structures and chromatin DNA. Although its DNA binding was unaffected, some variation in the cell cycle was apparent, the association with nuclear structures being less stable in the M phase. Interestingly, the less stable association occurred concomitantly with hyperphosphorylation of hORC1, suggesting that this hyperphosphorylation may be involved in M phase changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号