首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene alr0617, from the cyanobacterium Anabaena sp. PCC7120, which is homologous to cpeS from Gloeobacter violaceus PCC 7421, Fremyella diplosiphon (Calothrix PCC7601), and Synechococcus sp. WH8102, and to cpcS from Synechococcus sp. PCC7002, was overexpressed in Escherichia coli. CpeS acts as a phycocyanobilin: Cys-beta84-phycobiliprotein lyase that can attach, in vitro and in vivo, phycocyanobilin (PCB) to cysteine-beta84 of the apo-beta-subunits of C-phycocyanin (CpcB) and phycoerythrocyanin (PecB). We found the following: (a) In vitro, CpeS attaches PCB to native CpcB and PecB, and to their C155I-mutants, but not to the C84S mutants. Under optimal conditions (150 mm NaCl and 500 mm potassium phosphate, 37 degrees C, and pH 7.5), no cofactors are required, and the lyase had a Km(PCB) = 2.7 and 2.3 microm, and a kcat = 1.7 x 10(-5) and 1.1 x 10(-5) s(-1) for PCB attachment to CpcB (C155I) and PecB (C155I), respectively; (b) Reconstitution products had absorption maxima at 619 and 602 nm and fluorescence emission maxima at 643 and 629 nm, respectively; and (c) PCB-CpcB(C155I) and PCB-PecB(C155I), with the same absorption and fluorescence maxima, were also biosynthesized heterologously in vivo, when cpeS was introduced into E. coli with cpcB(C155I) or pecB(C155I), respectively, together with genes ho1 (encoding heme oxygenase) and pcyA (encoding PCB:ferredoxin oxidoreductase), thereby further proving the lyase function of CpeS.  相似文献   

2.
Synechococcus sp. PCC 7002 and all other cyanobacteria that synthesize phycocyanin have a gene, cpcT, that is paralogous to cpeT, a gene of unknown function affecting phycoerythrin synthesis in Fremyella diplosiphon. A cpcT null mutant contains 40% less phycocyanin than wild type and produces smaller phycobilisomes with red-shifted absorbance and fluorescence emission maxima. Phycocyanin from the cpcT mutant has an absorbance maximum at 634 nm compared with 626 nm for the wild type. The phycocyanin beta-subunit from the cpcT mutant has slightly smaller apparent molecular weight on SDS-PAGE. Purified phycocyanins from the cpcT mutant and wild type were cleaved with formic acid, and the products were analyzed by SDS-PAGE. No phycocyanobilin chromophore was bound to the peptide containing Cys-153 derived from the phycocyanin beta-subunit of the cpcT mutant. Recombinant CpcT was used to perform in vitro bilin addition assays with apophycocyanin (CpcA/CpcB) and phycocyanobilin. Depending on the source of phycocyanobilin, reaction products with CpcT had absorbance maxima between 597 and 603 nm as compared with 638 nm for the control reactions, in which mesobiliverdin becomes covalently bound. After trypsin digestion and reverse phase high performance liquid chromatography, the CpcT reaction product produced one major phycocyanobilin-containing peptide. This peptide had a retention time identical to that of the tryptic peptide that includes phycocyanobilin-bound, cysteine 153 of wild-type phycocyanin. The results from characterization of the cpcT mutant as well as the in vitro biochemical assays demonstrate that CpcT is a new phycocyanobilin lyase that specifically attaches phycocyanobilin to Cys-153 of the phycocyanin beta-subunit.  相似文献   

3.
通过BLAST软件分别对藻胆蛋白裂合酶(biliprotein lyase)编码基因cpcScpcT进行同源搜索分析,在鱼腥藻(Anabaena)PCC7120中获取了同源基因all5292alr0647。同源分析发现,这两个基因所编码氨基酸序列与其相对应的裂合酶氨基酸序列相似程度分别达到53.4%和61.4%。随后,对这两个基因进行了初步研究。结果显示:All5292和Alr0647无论单独还是共同表达均没有裂合酶催化藻蓝胆素PCB结合到藻蓝蛋白(phycocyanin)或藻红蓝蛋白(phycoerythrocyanin)β亚基上的功能。通过在不同生理条件下对鱼腥藻PCC7120的培养,还对这两个基因的调控表达进行了初步的探索。结果表明:all5292alr0647的表达与氮源的缺乏与否有联系,在氮胁迫条件下两个基因均进行了转录而在氮源充足的情况下则没有表达。  相似文献   

4.
The phycocyanin lyase CpcT1 (encoded by gene all5339) and lyase CpcS1 (encoded by gene alr0617) are capable of catalyzing the phycocyanobilin (PCB) covalently bound to the different sites of phycocyanin's and phycoerythrocyanin's β subunits, respectively. Lyase CpcS1, whose catalytic mechanism had been researched clearly, participates in the covalent coupling of phycobilin and apoprotein in the form of chaperone, and its important amino acids have been confirmed. In order to identify the functional amino acid residues of CpcT1, chemical modification was conducted to arginine, histidine, tryptophan, lysine and amino acid carboxyl of CpcT1. The results indicated that the catalytic activity of the CpcT1 was changed. After the modification of arginine, tryptophan and histidine, site-directed mutations were performed to those highly conserved amino acids which were selected by means of homologous comparison. The mutated lyase, apoprotein and the enzymes that synthesize the phycobilins were recombined in Escherichia coli (E. coli) and in vitro, yielding chromoproteins, which were detected by fluorescence and UV absorption spectrometry. The spectra were compared with that of the chromoprotein catalyzed by wild type lyase CpcT1, achieving relative specific activities of the various mutants. Meanwhile, the mutants were expressed in E. coli, and then circular dichroism structure of near-UV region was determined. The results demonstrated that H33F, W175S, R97A, C137S and C116S influence the catalytic activity of CpcT1. Being different from wild CpcT1, a great deal of α helix was involved in the structure of circular dichroism of R97A and W13S. CpcT1 or its mutants and the enzymes that synthesize the phycobilins, were reconstituted in E. coli and detected by spectra to check the bounding of lyases and PCB. The results of spectra and SDS-PAGE confirm that CpcT1 and its mutants cannot bind phycobilin, differing from the catalytic mechanism of CpcS1.  相似文献   

5.
While chromophore attachment to alpha-subunits of cyanobacterial biliproteins has been studied in some detail, little is known about this process in beta-subunits. The ones of phycoerythrocyanin and C-phycocyanin each carry two phycocyanobilin (PCB) chromophores covalently attached to cysteins beta84 and beta155. The differential nonenzymatic reconstitution of PCB to the apoproteins, PecA, PecB, CpcA and CpcB, as well as to mutant proteins of the beta-subunits lacking either one of the two binding cysteins, was studied using overexpression of the respective genes. PCB adds selectively to Cys-84 of CpcA, CpcB, PecA, and PecB, but the bound chromophore has a nonnative configuration, and in the case of CpcA, is partly oxidized to mesobiliverdin (MBV). The oxidation is independent of thiols but can be suppressed by ascorbate. The addition to Cys-beta84 is suppressed in the presence of detergents like Triton X-100, in favor of an addition to Cys-beta155 yielding the correctly bound chromophore. Triton X-100 also inhibits oxidation of the chromophore during addition to CpcA. The effect of Triton X-100 was studied on the isolated components of the reconstitution system. Absorption, fluorescence and circular dichroism spectra indicate a major conformational change of the chromophore upon addition of the detergent, which probably controls the site selectivity of the addition reaction, and inhibits the oxidation of PCB to MBV.  相似文献   

6.
Pigmentation of light-harvesting phycobiliproteins of cyanobacteria requires covalent attachment of open-chain tetrapyrroles, bilins, to the apoproteins. Thioether formation via addition of a cysteine residue to the 3-ethylidene substituent of bilins is mediated by lyases. T-type lyases are responsible for attachment to Cys-155 of phycobiliprotein β-subunits. We present crystal structures of CpcT (All5339) from Nostoc (Anabaena) sp. PCC 7120 and its complex with phycocyanobilin at 1.95 and 2.50 Å resolution, respectively. CpcT forms a dimer and adopts a calyx-shaped β-barrel fold. Although the overall structure of CpcT is largely retained upon chromophore binding, arginine residues at the opening of the binding pocket undergo major rotameric rearrangements anchoring the propionate groups of phycocyanobilin. Based on the structure and mutational analysis, a reaction mechanism is proposed that accounts for chromophore stabilization and regio- and stereospecificity of the addition reaction. At the dimer interface, a loop extending from one subunit partially shields the opening of the phycocyanobilin binding pocket in the other subunit. Deletion of the loop or disruptions of the dimer interface significantly reduce CpcT lyase activity, suggesting functional relevance of the dimer. Dimerization is further enhanced by chromophore binding. The chromophore is largely buried in the dimer, but in the monomer, the 3-ethylidene group is accessible for the apophycobiliprotein, preferentially from the chromophore α-side. Asp-163 and Tyr-65 at the β- and α-face near the E-configured ethylidene group, respectively, support the acid-catalyzed nucleophilic Michael addition of cysteine 155 of the apoprotein to an N-acylimmonium intermediate proposed by Grubmayr and Wagner (Grubmayr, K., and Wagner, U. G. (1988) Monatsh. Chem. 119, 965–983).  相似文献   

7.
The phycobilin:cysteine 84-phycobiliprotein lyase, CpcS1, catalyzes phycocyanobilin (PCB) and phycoerythrobilin (PEB) attachment at nearly all cysteine 82 binding sites (consensus numbering) of phycoerythrin, phycoerythrocyanin, phycocyanin, and allophycocyanin (Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Plöscher, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14300–14305). We now show that CpcS1 binds PCB and PEB rapidly with bi-exponential kinetics (38/119 and 12/8300 ms, respectively). Chromophore binding to the lyase is reversible and much faster than the spontaneous, but low fidelity chromophore addition to the apo-protein in the absence of the lyase. This indicates kinetic control by the enzyme, which then transfers the chromophore to the apo-protein in a slow (tens of minutes) but stereo- and regioselectively corrects the reaction. This mode of action is reminiscent of chaperones but does not require ATP. The amino acid residues Arg-18 and Arg-149 of the lyase are essential for chromophore attachment in vitro and in Escherichia coli, mutations of His-21, His-22, Trp-75, Trp-140, and Arg-147 result in reduced activity (<30% of wild type in vitro). Mutants R147Q and W69M were active but had reduced capacity for PCB binding; additionally, with W69M there was loss of fidelity in chromophore attachment. Imidazole is a non-competitive inhibitor, supporting a bilin-binding function of histidine. Evidence was obtained that CpcS1 also catalyzes exchange of C-β84-bound PCB in biliproteins by PEB.  相似文献   

8.
The core-membrane linker, LCM, connects functionally the extramembraneous light-harvesting complex of cyanobacteria, the phycobilisome, to the chlorophyll-containing core-complexes in the photosynthetic membrane. Genes coding for the apoprotein, ApcE, from Nostoc sp. PCC 7120 and for a C-terminally truncated fragment ApcE(1-240) containing the chromophore binding cysteine-195 were overexpressed in Escherichia coli. Both bind covalently phycocyanobilin (PCB) in an autocatalytic reaction, in the presence of 4M urea necessary to solubilize the proteins. If judged from the intense, red-shifted absorption and fluorescence, both products have the features of the native core-membrane linker LCM, demonstrating that the lyase function, the dimerization motif, and the capacity to extremely red-shift the chromophore are all contained in the N-terminal phycobilin domain of ApcE. The red-shift is, however, not the result of excitonic interactions: Although the chromoprotein dimerizes, the circular dichroism shows no indication of excitonic coupling. The lack of homologies with the autocatalytically chromophorylating phytochromes, as well as with the heterodimeric cysteine-alpha84 lyases, indicates that ApcE constitutes a third type of bilin:biliprotein lyase.  相似文献   

9.
Phytochromes are widely distributed biliprotein photoreceptors. Typically, the chromophore becomes covalently linked to the protein during an autocatalytic lyase reaction. Plant and cyanobacterial phytochromes incorporate bilins with a ring A ethylidene side chain, whereas other bacterial phytochromes utilize biliverdin as chromophore, which has a vinyl ring A side chain. For Agrobacterium phytochrome Agp1, site-directed mutagenesis provided evidence that biliverdin is bound to cysteine 20. This cysteine is highly conserved within bacterial homologues, but its role as attachment site has as yet not been proven. We therefore performed mass spectrometry studies on proteolytic holopeptide fragments. For that purpose, an Agp1 expression vector was re-engineered to produce a protein with an N-terminal affinity tag. Following proteolysis, the chromophore co-purified with a ca. 5 kDa fragment during affinity chromatography, showing that the attachment site is located close to the N-terminus. Mass spectrometry analyses performed with the purified chromopeptide confirmed the role of the cysteine 20 as biliverdin attachment site. We also analyzed the role of the highly conserved histidine 250 by site-directed mutagenesis. The homologous amino acid plays an important but yet undefined role in plant phytochromes and has been proposed as chromophore attachment site of Deinococcus phytochrome. We found that in Agp1, this amino acid is dispensable for covalent attachment, but required for tight chromophore-protein interaction.  相似文献   

10.
Zhao KH  Ran Y  Li M  Sun YN  Zhou M  Storf M  Kupka M  Böhm S  Bubenzer C  Scheer H 《Biochemistry》2004,43(36):11576-11588
Photochromic biliproteins can be switched by light between two states, initiated by Z/E photoisomerization of the linear tetrapyrrole chromophore. The cyanobacterium Anabaena sp. PCC 7120 contains three genes coding for such biliproteins, two coding for phytochromes (aphA/B) and one for the alpha subunit of phycoerythrocyanin (pecA). (a) aphA was overexpressed in Escherichia coli with N-terminal His and S tags, and the protein was reconstituted by an optimized protocol with phycocyanobilin (PCB), to yield the photochromic chromoprotein, PCB-AphA, carrying the PCB chromophore. (b) AphA chromophorylation is autocatalytic such as in other phytochromes. (c) AphA chromophorylation is also possible by chromophore transfer from the PCB-carrying biliprotein, phycocyanin (CPC). The autocatalytic transfer is very slow, and it is enhanced more than 100-fold by catalysis of PCB:CpcA lyase and alpha-CPC as donor. (d) Through deletion mutations of aphA, a short sequence IQPHGV [amino acids (aa) 26-31] was found essential for the lyase activity of AphA, indicating an interaction of the N terminus with the chromophore-binding domain around cysteine 259. (e) A motif of at least 23 aa, starting with this sequence and located approximately 250 aa N terminal of the chromophore-binding cysteine, is proposed to relate to the lyase function in plant and most prokaryotic phytochromes. (f) Long-range interactions in AphA are further supported by blue-shifted absorptions (相似文献   

11.
Biliproteins are a widespread group of brilliantly coloured photoreceptors characterized by linear tetrapyrrolic chromophores, bilins, which are covalently bound to the apoproteins via relatively stable thioether bonds. Covalent binding stabilizes the chromoproteins and is mandatory for phycobilisome assembly; and, it is also important in biliprotein applications such as fluorescence labelling. Covalent binding has, on the other hand, also considerably hindered biliprotein research because autocatalytic chromophore additions are rare, and information on enzymatic addition by lyases was limited to a single example, an EF-type lyase attaching phycocyanobilin to cysteine-α84 of C-phycocyanin. The discovery of new activities for the latter lyases, and of new types of lyases, have reinvigorated research activities in the subject. So far, work has mainly concentrated on cyanobacterial phycobiliproteins. Methodological advances in the process, however, as well as the finding of often large numbers of homologues, opens new possibilities for research on the subsequent assembly/disassembly of the phycobilisome in cyanobacteria and red algae, on the assembly and organization of the cryptophyte light-harvesting system, on applications in basic research such as protein folding, and on the use of phycobiliproteins for labelling.  相似文献   

12.
Phycobilin lyases covalently attach phycobilin chromophores to apo-phycobiliproteins (PBPs). Genome analyses of the unicellular, marine cyanobacterium Synechococcus sp. PCC 7002 identified three genes, denoted cpcS-I, cpcU, and cpcV, that were possible candidates to encode phycocyanobilin (PCB) lyases. Single and double mutant strains for cpcS-I and cpcU exhibited slower growth rates, reduced PBP levels, and impaired assembly of phycobilisomes, but a cpcV mutant had no discernable phenotype. A cpcS-I cpcU cpcT triple mutant was nearly devoid of PBP. SDS-PAGE and mass spectrometry demonstrated that the cpcS-I and cpcU mutants produced an altered form of the phycocyanin (PC) beta subunit, which had a mass approximately 588 Da smaller than the wild-type protein. Some free PCB (mass = 588 Da) was tentatively detected in the phycobilisome fraction purified from the mutants. The modified PC from the cpcS-I, cpcU, and cpcS-I cpcU mutant strains was purified, and biochemical analyses showed that Cys-153 of CpcB carried a PCB chromophore but Cys-82 did not. These results show that both CpcS-I and CpcU are required for covalent attachment of PCB to Cys-82 of the PC beta subunit in this cyanobacterium. Suggesting that CpcS-I and CpcU are also required for attachment of PCB to allophycocyanin subunits in vivo, allophycocyanin levels were significantly reduced in all but the CpcV-less strain. These conclusions have been validated by in vitro experiments described in the accompanying report (Saunée, N. A., Williams, S. R., Bryant, D. A., and Schluchter, W. M. (2008) J. Biol. Chem. 283, 7513-7522). We conclude that the maturation of PBP in vivo depends on three PCB lyases: CpcE-CpcF, CpcS-I-CpcU, and CpcT.  相似文献   

13.
The widely distributed phytochrome photoreceptors carry a bilin chromophore, which is covalently attached to the protein during a lyase reaction. In plant phytochromes, the natural chromophore is coupled by a thioether bond between its ring A ethylidene side chain and a conserved cysteine residue within the so-called GAF domain of the protein. Many bacterial phytochromes carry biliverdin as natural chromophore, which is coupled in a different manner to the protein. In phytochrome Agp1 of Agrobacterium tumefaciens, biliverdin is covalently attached to a cysteine residue close to the N terminus (position 20). By testing different natural and synthetic biliverdin derivatives, it was found that the ring A vinyl side chain is used for chromophore attachment. Only those bilins that have ring A vinyl side chain were covalently attached, whereas bilins with an ethylidene or ethyl side chain were bound in a noncovalent manner. Phycocyanobilin, which belongs to the latter group, was however covalently attached to a mutant in which a cysteine was introduced into the GAF domain of Agp1 (position 249). It is proposed that the regions around positions 20 and 249 are in close contact and contribute both to the chromophore pocket. In competition experiments it was found that phycocyanobilin and biliverdin bind with similar strength to the wild type protein. However, in the V249C mutant, phycocyanobilin bound much more strongly than biliverdin. This finding could explain why during phytochrome evolution in cyanobacteria, the chromophore-binding site swapped from the N terminus into the GAF domain.  相似文献   

14.
15.
Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max) = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state.  相似文献   

16.
17.
Derks AK  Vasiliev S  Bruce D 《Biochemistry》2008,47(45):11877-11884
Phycobilisomes are the major light-harvesting complexes for cyanobacteria, and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. Phycocyanobilin chromophores are covalently bonded to the phycocyanin beta subunit (CpcB) by specific lyases which have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, we found that mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin when grown under low-light conditions. Absorbance measurements at 10 K revealed the energy states of the beta phycocyanin chromophores to be slightly shifted, and 77 K steady state fluorescence emission spectroscopy showed that excitation energy transfer involving the targeted chromophores was disrupted. This evidence indicates that the position of the phycocyanobilin chromophore within the binding domain of the phycocyanin beta subunit had been modified. We hypothesize that alternate, less specific lyases are able to add chromophores, with varying effectiveness, to the beta binding sites.  相似文献   

18.
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins. The ability of the phycocyanin α-subunit (CpcA) to bind alternative linear tetrapyrrole chromophores was examined through the use of a heterologous expression system in Escherichia coli. E. coli strains produced phycocyanobilin, phytochromobilin, or phycoerythrobilin when they expressed 3Z-phycocyanobilin:ferredoxin oxidoreductase (PcyA), 3Z-phytochromobilin:ferredoxin oxidoreductase (HY2) from Arabidopsis thaliana, or phycoerythrobilin synthase (PebS) from the myovirus P-SSM4, respectively. CpcA from Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 was coexpressed in these strains with the phycocyanin α-subunit phycocyanobilin lyase, CpcE/CpcF, or the phycoerythrocyanin α-subunit phycocyanobilin isomerizing lyase, PecE/PecF, from Noctoc sp. PCC 7120. Both lyases were capable of attaching three different linear tetrapyrrole chromophores to CpcA; thus, up to six different CpcA variants, each with a unique chromophore, could be produced with this system. One of these chromophores, denoted phytoviolobilin, has not yet been observed naturally. The recombinant proteins had unexpected and potentially useful properties, which included very high fluorescence quantum yields and photochemical activity. Chimeric lyases PecE/CpcF and CpcE/PecF were used to show that the isomerizing activity that converts phycocyanobilin to phycoviolobilin resides with PecF and not PecE. Finally, spectroscopic properties of recombinant phycocyanin R-PCIII, in which the CpcA subunits carry a phycoerythrobilin chromophore, are described.  相似文献   

19.
Chen Q  Chen SL  Song QS  Xia SS 《Gene》2011,488(1-2):57-61
A novel gene slr2049 was identified in Synechococcus sp. PCC7002 by homologous alignment. The features and possible functions of slr2049 gene were predicted by bioinformatics analysis. The function of slr2049 was analyzed in vitro with a heterologous Escherichia coli system with plasmids conferring biosynthesis of phycocyanobilin (PCB) and of the acceptor proteins, β-phycocyanin (CpcB). The resulting products were evaluated with SDS-PAGE and absorption spectra. The function of slr2049 was further analyzed via site-directed mutations. Two mutants, slr2049 (W14L) and slr2049 (Y132S) were generated. The results showed that Slr2049 could catalyze the chromophorylation of CpcB. Compared to wild type, mutant Slr2049 (W14L) had red-shifted absorbance maxima and was not highly fluorescent as the wild-type. However, mutant Slr2049 (Y132S) was almost the same as the wild-type. In conclusion, our study suggests that we have cloned a novel gene and this gene may play an important role in attachment of the chromophores to the apo-proteins.  相似文献   

20.
Chromophores of allophycocyanin and R-phycocyanin   总被引:5,自引:1,他引:4       下载免费PDF全文
The biliprotein allophycocyanin was purified from Phormidium luridum, Anabaena variabilis and Plectonema boryanum. R-phycocyanin was purified from Rhodymenia palmata. The chromophores were cleaved from the denatured protein by methanol hydrolysis. They were purified and crystallized as the dimethyl esters. Chromatographic and absorption-spectral (visible–ultraviolet and infrared) comparisons with reference material have established phycocyanobilin as the chromophore of allophycocyanin. Phycocyanobilin and phycoerythrobilin were shown to be the chromophores of R-phycocyanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号