首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The interaction between carbon substrates and O2 and their effects on nitrogenase activity (C2H2) were examined in detached nodules of pea (Pisum sativum L. cv “Sparkle”). The internal O2 concentration was estimated from the fractional oxygenation of leghemoglobin measured by reflectance spectroscopy. Lowering the endogenous carbohydrate content of nodules by excising the shoots 16 hours before nodule harvest or by incubating detached nodules at 100 kPa O2 for 2 hours resulted in a 2- to 10-fold increase in internal O2, and a decline in nitrogenase activity. Conversely, when detached nodules were supplied with 100 millimolar succinate, the internal O2 was lowered. Nitrogenase activity was stimulated by succinate but only at high external O2. Oxygen uptake increased linearly with external O2 but was affected only slightly by the carbon treatments. The apparent diffusion resistance in the nodule cortex was similar in all of the treatments. Carbon substrates can thus affect nitrogenase activity indirectly by affecting the O2 concentration within detached nodules.  相似文献   

2.
A method is presented for the rapid measurement of the spectral properties of detached nodules of pea (Pisum sativum L. cv “Sparkle”) by diffuse reflectance spectroscopy. After correcting the spectra for surface light scattering, the spectrum of leghemoglobin is obtained. From this, the fractional oxygenation of leghemoglobin and the internal O2 concentration can be calculated. With this method, we determined internal O2 while measuring nitrogenase activity (C2H2) in detached pea nodules over a range of external O2 concentrations. Nitrogenase activity was maximum when leghemoglobin was 25% oxygenated, corresponding to a calculated free O2 concentration of 45 nanomolar in infected cells. Advantages of this method over previous methods which employed transmitted light are: (a) many nodules can be assayed simultaneously, (b) nitrogenase activity (C2H2) can be determined at the same time as spectra are recorded, and (c) spectra can be obtained from nodules submerged in buffer containing metabolic effectors.  相似文献   

3.
Various forms of stress result in decreased O2 permeability or decreased capacity to consume O2 in legume root nodules. These changes alter the nodule interior O2 concentration (Oi). To determine the relationship between Oi and nitrogenase activity in attached soybean (Glycine max) nodules, we controlled Oi by varying external pO2 while monitoring internal H2 concentration (Hi) with microelectrodes. Oi was monitored by noninvasive leghemoglobin spectrophotometry (nodule oximetry). After each step-change in Oi, Hi approached a new steady state, with a time constant averaging 23 s. The rate of H2 production by nitrogenase was calculated as the product of Hi, nodule surface area, and nodule H2 permeability. H2 permeability was estimated from O2 permeability (measured by nodule oximetry) by assuming diffusion through air-filled pores; support for this assumption is presented. Oi was nearly optimal for nitrogenase activity (H2 production) between 15 and 150 nm. A 1- to 2-min exposure to elevated external pO2 (40-100 kPa) reduced Hi to zero, but nitrogenase activity recovered quickly under air, often in <20 min. This rapid recovery contrasts with previous reports of much slower recovery with longer exposures to elevated pO2. The mechanism of nitrogenase inhibition may differ between brief and prolonged O2 exposures.  相似文献   

4.
When intact nodulated roots of soybean (Glycine max L. Merr. nodulated with Bradyrhizobium japonicum strain USDA 16) were exposed to an atmosphere lacking N2 gas (Ar:O2 80:20), total nitrogenase activity (measured as H2 evolution) and respiration (CO2 evolution) declined with time of exposure. In Ar-inhibited nodules, when the O2 concentration in the rhizosphere was increased in a linear `ramp' of 2.7% per minute, 93% of the original H2 evolution and 99% of the CO2 evolution could be recovered. The internal nodule O2 concentration (estimated from leghemoglobin oxygenation) declined to 56% of its initial value after 60 minutes of Ar:O2 exposure and could be partially recovered by the linear increases in O2 concentration. Nodule gas permeability, as estimated from the lag in ethylene production following exposure of nodules to acetylene, decreased to 26% of its initial value during the Ar-induced decline. Collectively, the results provide direct evidence that the Ar-induced decline results from decreased nodule gas permeability and indicate that the decline in permeability, rather than being immediate, occurs gradually over the period of Ar:O2 exposure.  相似文献   

5.
Although infected cell O2 concentration (Oi) is known to limit respiration and nitrogenase activity in legume nodules, techniques have not been available to measure both processes simultaneously in an individual legume nodule. Consequently, details of the relationship between nitrogenase activity and Oi are not fully appreciated. For the present study, a probe was designed that allowed open circuit measurements of H2 evolution (nitrogenase activity) and CO2 evolution (respiration rate) in a single attached soybean nodule while simultaneously monitoring fractional oxygenation of leghemoglobin (and thereby Oi) with a nodule oximeter. Compared to measurements of whole nodulated roots, use of the probe led to inhibition of nitrogenase activity in the single nodules. During oximetry measurements, total nitrogenase activity (TNA; peak H2 evolution in Ar/O2) in the single nodules was 16% of that in whole nodulated roots and 48% of nodulated root activity when Oi was not being measured simultaneously. This inhibition did not affect the nodules' ability to regulate Oi, because exposure to Ar/O2 (80:20, v/v) caused nitrogenase activity and respiration rate to decline, and this decline was linearly correlated with a concurrent decrease in Oi. When the nodules were subsequently exposed to a linear increase in external pO2 from 20 to 100% O2 at 2.7% O2/min, fractional leghemoglobin oxygenation first increased gradually and then more rapidly, reaching saturation at a pO2 between 76 and 100% O2. Plots of nitrogenase activity and respiration rate against Oi showed that rates increased with Oi up to a value of 57 nM, with half-maximal rates being attained at Oi values between 10 and 14 nM O2. The maximum nitrogenase activity achieved during the increase in pO2 (potential nitrogenase activity) was 30 to 57% of that measured in intact nodulated roots, showing that O2 limitation of nitrogenase activity could account for a significant proportion of the inhibition of TNA associated with the use of the probe. However, some factor(s) in addition to O2 must have limited the activity of single nodules at both subsaturating and saturating Oi. At Oi values greater than about 57 nM, nitrogenase activity and nodule respiration were inhibited, but, because this inhibition has been shown previously to be readily reversible when the Oi was lowered, it was not attributed to direct O2 inactivation of the nitrogenase protein. These results indicate that maximum nitrogenase activity in legume nodules is supported by a narrow range of Oi values. Possible biochemical mechanisms are discussed for both O2 limitation of nitrogenase activity at low Oi and inhibition of nitrogenase activity at high Oi.  相似文献   

6.
Gas exchange measurements and noninvasive leghemoglobin (Lb) spectrophotometry (nodule oximetry) were used to monitor nodule responses to shoot removal in alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus). In each species, total nitrogenase activity, measured as H2 evolution in Ar:O2 (80:20), decreased to <50% of the initial rate within 1 hour after detopping, and net CO2 production decreased to about 65% of the initial value. In a separate experiment in which nodule oximetry was used, nodule O2 permeability decreased 50% within 5 hours in each species. A similar decrease in the O2-saturated respiration rate (Vmax) for the nodule central zone occurred within 5 hours in birdsfoot trefoil, but only after 24 hours in alfalfa. Lb concentration, also measured by oximetry, decreased after 48 to 72 hours. The decrease in permeability preceded the decrease in Vmax in each species. Vmax may depend mainly on carbohydrate availability in the nodule. If so, then the decrease in permeability could not have been triggered by decreasing carbohydrate availability. Both oximetry and gas exchange data were consistent with the hypothesis that, for the cultivars tested, carbohydrate availability decreased more rapidly in birdsfoot trefoil than in alfalfa nodules. Fractional Lb oxygenation (initially about 0.15) decreased during the first 24 hours after detopping but subsequently increased to >0.65 for a majority of nodules of each species. This increase could lead to O2 inactivation of nitrogenase.  相似文献   

7.
Physiological regulation of nodule gas permeability has a central role in the response of legumes to such diverse factors as drought, defoliation, and soil nitrate. A new method for quantifying nodule respiration and O2 permeability, based on noninvasive spectrophotometry of leghemoglobin, was evaluated using intact, attached nodules of Lotus corniculatus. First, the relationship between nodule respiration (O2 consumption) rate and internal O2 concentration was determined from the rate of decrease in fractional oxygenation of leghemoglobin (FOL) under N2. The rate of increase of FOL under 100% O2 was then used to calculate nodule O2 permeability, after correcting for respiration. Inactivation of nitrogenase by exposure to 100% O2 for 15 minutes led to decreases in both permeability and O2-saturated respiration (Vmax), but the brief (<15 seconds) exposures to 100% O2 required by the assay itself had little effect on either parameter. A gradual increase in external O2 concentration from 20 to 40% resulted in a reversible decrease in permeability, but no change in Vmax. The new method is likely to be useful for research on nodule physiology and might also be applicable to agronomic research and crop improvement programs.  相似文献   

8.
Parasponia is the first non-legume genus proven to form nitrogen-fixing root nodules induced by rhizobia. Infiltration with India ink demonstrated that intercellular air spaces are lacking in the inner layers of the nodule cortex. Oxygen must diffuse through these layers to reach the cells containing the rhizobia, and it was calculated that most of the gradient in O2 partial pressure between the atmosphere and rhizobia occurs at the inner cortex. This was confirmed by O2 microelectrode measurements which showed that the O2 partial pressure was much lower in the zone of infected cells than in the cortex. Measurements of nitrogenase activity and O2 uptake as a function of temperature and partial pressure of O2 were consistent with diffusion limitation of O2 uptake by the inner cortex. In spite of the presumed absence of leghemoglobin in nodules of Parasponia rigida Merr. and Perry, energy usage for nitrogen fixation was similar to that in legume nodules. The results demonstrate that O2 regulation in legume and Parasponia nodules is very similar and differs from O2 regulation in actionorhizal nodules.  相似文献   

9.
The effects of NH4NO3 on the development of root nodules of Pisum sativum after infection with Rhizobium leguminosarum (strain PRE) and on the nitrogenase activity of the bacteriods in the nodule tissue were studied. The addition of NH4NO3 decreased the nitrogenase activity measured on intact nodules. This reduction of nitrogen fixation did not result from a reduced number of bacteroids or a decreased amount of bacteroid proteins per gram of nodule. The synthesis of nitrogenase, measured as the relative amount of incorporation of [35S]sulfate into the components I and II of nitrogenase was similarly not affected.The addition of NH4NO3 decreased the amount of leghemoglobin in the nodules and there was a quantitative correlation between the leghemoglobin content and the nitrogen-fixing capacity of the nodules. The conclusion is that the decrease of nitrogen-fixing capacity is caused by a decrease of the leghemoglobin content of the root nodules and not by repression of the nitrogenase synthesis.  相似文献   

10.
The effect of excision on O2 diffusion and metabolism in soybean nodules   总被引:2,自引:0,他引:2  
Nitrogen-fixing nodules of soybean [Glycine max (L.) Merr. cv. Maple Arrow inoculated with Bradyrhizobium japonicum USDA 16] were studied before and after excision from the root to determine the role the O2 regulation plays in the inhibition of nodule activity and the potential for using excised nodules nodules in studies of nodule metabolism. Relative nitrogenase (EC 1.7.99.2) activity (H2 evolution in N2:O2) and nodule respiration (CO2 evolution) were monitored first in intact nodulated roots and then in freshly excised nodules of the same plant to determine the time course of the decline in nodule metabolism. Folowing excision, nitrogenase activity and respiration declined rapidly in the first minute and then more gradually. After 40 min the rate of H2 evolution was only 14–28% of that in the intact plant. In some nodules activity declined steadily, and in others there was a partial recovery in activity ca 10 min after detachment. Infected cell O2 concentration (Oi), measured by a spectro-photometric technique, also declined after nodule detachment with a time course similar to the declines in nitrogenase activity and respiration. Following excision, Oi levels declined rapidly from ca 21 nM in attached nodules to 8–12 nM at 4–10 min after excision and then more gradually to 2–3 nM O2 at 30–40 min after excision. These results show that the nodules' permeability to gas diffusion continued to be regulated for up to 40 min after detachement. At 40 min after detachment, when excised nodules displayed steady-state rates of gas exchange, linear increases in pO2 from 20 to 100% at 4% min?1 resulted in recoveries of H2 and CO2 evolution, indicating that Oi limited nitrogenase activity durig this period, and that energy reserves were greatly in excess of the O2 available for respiration. When detached nodules were equilibrated for 12 h at 20, 30 and 50% O2, Oi values measured at supra-ambient pO2 were greater than those at 20% O2 and were linked with a more rapid decline in nitrogenase activity. Also, increases in external pO2 (Oc) failed to stimulate nodule metabolism, suggesting that the nodules' energy reserves were no longer greatly in excess of their respiratory demands. It was concluded that soybean nodules could provide useful material for steady-state studies of nodule metabolism between 40 and 240 min after detachment, but to attain metabolic rates equivalent to in vivo rates the nodules must be exposed to above-ambient pO2.  相似文献   

11.
Nicotinate has been postulated to interfere with the binding of O2 to ferrous leghemoglobin in soybean (Glycine max) root nodules. For such a function, the levels of nicotinate in nodules must be sufficiently high to bind a significant amount of leghemoglobin. We have measured levels of nicotinate, nicotinamide, and leghemoglobin in soybean nodules from plants 34 to 73 days after planting in a glasshouse. On a per gram nodule fresh weight basis, levels between 10.4 and 21 nanomoles for nicotinate, 19.2 and 37.8 nanomoles for nicotinamide, and 170 to 280 nanomoles for leghemoglobin were measured. Even if all the nicotinate were bound to ferrous leghemoglobin, only 11% or less of the total leghemoglobin would be unavailable for binding O2. Using the measured levels of nicotinate and a pH of 6.8 in the cytosol of presenescent soybean nodules, we estimate that the proportion of ferrous leghemoglobin bound to nicotinate in such nodules would be less than 1%. These levels of nicotinate are too low to interfere with the reaction between ferrous leghemoglobin and O2 in soybean root nodules.  相似文献   

12.
Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.  相似文献   

13.
在个体瘤发育的不同阶段和植株生长的不同时期,以及在不同的光照条件下,分别测定茎瘤的固氨活性和豆血红蛋白含量。结果表明,毛萼田菁茎瘤的固氨活性和豆血红蛋白含量呈正相关,豆血红蛋白在茎瘤的共生固氮中起着重要的作用。  相似文献   

14.
The objectives of this study were to determine whether attached nodules of soybean (Glycine max L. Merr.) could adjust to gradual increases in rhizosphere pO2 without nitrogenase inhibition and to determine whether the nitrogenase activity of the nodules is limited by pO2 under ambient conditions. A computer-controlled gas blending apparatus was used to produce linear increases (ramps) in pO2 around attached nodulated roots of soybean plants in an open gas exchange system. Nitrogenase activity (H2 production in N2:O2 and Ar:O2) and respiration (CO2 evolution) were monitored continuously as pO2 was ramped from 20 to 30 kilopascals over periods of 0, 5, 10, 15, and 30 minutes. The 0, 5, and 10 minute ramps caused inhibitions of nitrogenase and respiration rates followed by recoveries of these rates to their initial values within 30 minutes. Distinct oscillations in nitrogenase activity and respiration were observed during the recovery period, and the possible basis for these oscillations is discussed. The 15 and 30 minute ramps did not inhibit nitrogenase activity, suggesting that such inhibition is not a factor in the regulation of nodule diffusion resistance. During the 30 minute ramp, a stimulation of nitrogenase activity was observed, indicating that an O2-based limitation to nitrogenase activity occurs in soybean nodules under ambient conditions.  相似文献   

15.
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, soluble protein and leghemoglobin levels in the host cell cytosol decreased, and proteolytic activity against azocasein increased. Degradative changes were not detected in bacteroids during nodule senescence. Total soluble bacteroid protein per gram of nodule remained constant, and an increase in proteolytic activity in bacteroid extracts was not observed. These results are consistent with the view that soybean nodule bacteroids are capable of redifferentiation into free-living bacteria upon deterioration of the legume-rhizobia symbiosis.  相似文献   

16.
Summary A cDNA clone (pcPvNGS-01) to glutamine synthetase (GS) mRNA from root nodules of Phaseolus vulgaris showed cross-hybridization to GS and mRNA from soybean root nodules, thus allowing its use as a probe to study the expression of GS genes during root nodule development in soybeans. Hybrid-select translation of root and nodule RNA of soybean with DNA from pcPvNGS-01, followed by 2D gel electrophoresis, showed six peptides in the root and an additional four peptides in the nodule which represent nodule-specific glutamine synthetase (GSn) gene products. The GSn gene products appeared for the first time between day 11 and 12 after infection, either concomitant with the onset of nitrogenase activity or immediately following it. The levels of expression of the GSn and leghemoglobin genes were not affected in young Fix- nodules formed by Bradyrhizobium japonicum strains that are defective in nitrogenase activity, suggesting that the induction of these two sets of host genes take place independent of nitrogenase activity. However, in Fix- nodules that are incapable of maintaining the peribacteroid membrane, GSn gene products were not detected while 1ba, 1bc2 and 1bc3 appeared. In both the timing of appearance during root nodule development and the effect of different bacterial mutations on the expression, GSn genes differ from most other nodulin genes examined (30), suggesting different regulatory mechanisms.  相似文献   

17.
The O2 permeability of legume root nodules is under physiological control; decreases in permeability are triggered by various forms of stress. Two linked mathematical models were used to explore several hypotheses concerning the physical nature of the variable diffusion barrier in nodules. Respiration and diffusion of dissolved O2 and oxygenated leghemoglobin were simulated for the nodule cortex and the nodule interior. Measured nodule permeabilities were shown to be inconsistent with the hypothesis that large numbers of air-filled pores penetrate the diffusion barrier. Changes in the affinity of leghemoglobin for O2 or in the rate of cytoplasmic streaming in diffusion barrier cells did not result in the large changes in O2 permeability reported for real nodules. The presence or absence, but not the thickness, of aqueous plugs in radial pores through the cortex was found to have a large effect on permeability. Flooding of intercellular spaces, either between layers of cells in the cortex or in the nodule interior, also caused large changes in simulated permeability. The unsteady-state O2 method for determining nodule permeability was tested using data generated by the model. The accuracy of the method was confirmed, provided that certain assumptions (full oxygenation of leghemoglobin under pure O2 and uniform conditions in the nodule interior) are met.  相似文献   

18.
A fiber optic spectrophotometric system was used to monitor the in vivo oxygenation of leghemoglobin in intact, attached soybean root nodules (Glycine max L. Merr. × USDA 16 Bradyrhizobium japonicum) which were flattened during development by growth in narrow, glass-walled cuvettes. When equilibrated at an external pO2 of 20 kilopascals, leghemoglobin was 36.6 ± 5.4% oxygenated, a value estimated to represent an infected cell O2 concentration of 21.5 nanomolar. Increasing the external pO2 from 20 to 25 kilopascals caused a rapid increase in leghemoglobin oxygenation, followed by a recovery to the initial level, all within 7.5 minutes. At 25 kilopascals O2, the rates of H2 and CO2 evolution were similar to those at 20 kilopascals. Since respiration had not increased, the results support the proposal that nodules adapt to increased external pO2 by regulating their resistance to O2 diffusion.  相似文献   

19.
Sensitive fluorometric assay for leghemoglobin   总被引:4,自引:0,他引:4  
A sensitive spectrofluorometric assay for leghemoglobin is based upon the action of hot saturated oxalic acid on heme proteins. The assay will detect 200 ng of leghemoglobin per milliliter and is specific enough to permit estimation in single nodules or extracts of whole roots. The leghemoglobin concentration measured fluorometrically shows a correlation with nitrogenase [C2H2] activity, even during nodule senescence, when standard colorimetric assays may overestimate leghemoglobin.  相似文献   

20.
Soybean (Glycine max cv Hodgson) nitrogenase activity (C2H2 reduction) in the presence or absence of nitrate was studied at various external O2 tensions. Nitrogenase activity increased with oxygen partial pressure up to 30 kilopascals, which appeared to be the optimum. A parallel increase in ATP/ADP ratios indicated a limitation of respiration rate by low O2 tensions in the nodule, and the values found for adenine nucleotide ratios suggested that the nitrogenase activity was limited by the rate of ATP regeneration. In the presence of nitrate, the nitrogenase activity was low and less stimulated by increased pO2, although the nitrite content per gram of nodules decreased from 0.05 to 0.02 micromole when pO2 increased from 10 to 30 kilopascals. Therefore, the accumulation of nitrite inside the nodule was probably not the major cause of the inhibition. Instead, inhibition by nitrate could be due to competition for reducing power between nitrate reduction and bacteroid or mitochondrial respiration inside the nodule. This is supported by the observation of decrease in ATP/ADP ratios from 1.65, in absence of nitrate, to 0.93 in the presence of this anion at 30 kilopascals O2. Furthermore, the inhibition was suppressed by the addition, to the plant nutrient solution, of 15 millimolar l-malate, a carbon substrate that is considered to be the major source of reductant for the bacteroids in the symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号