首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inactivation of plasma alpha 1-proteinase inhibitor by nitrous acid   总被引:1,自引:0,他引:1  
Exposure of alpha 1-PI to nitrous acid resulted in a complete inactivation of either of its elastase or trypsin inhibitors activities. Amino acid analyses of the nitrous acid treated inhibitor revealed only losses of one tryphanyl and three lysyl residues. Reductive methylation of alpha 1-PI offered no protection against loss of activity by nitrous acid. Since no further loss of lysyl residues was observed upon exposure of fully active reductively methylated alpha 1-PI to nitrous acid, modification of one tryptophanyl residue appears to be responsible for the inhibitor's sensitivity to nitrous acid. Absorption spectral studies of the nitrous acid treated alpha 1-PI indicated that the tryptophanyl residue was modified to its N-nitroso derivative.  相似文献   

2.
Human plasma alpha1 proteinase inhibitor is the body's principal modulator of serine proteinases (such as those released from phagocytic cells). Cysteine-active-site proteinases, which are not inhibited, have now been found to inactivate this important inhibitor by proteolytic cleavage of a scissile peptide bond. Papain carries out this inactivation catalytically, whereas cathepsin B1 acts stoicheiometrically. Thus thiol proteinases could easily disrupt the delicately regulated balance between serine proteinases and alpha1 proteinase inhibitor.  相似文献   

3.
Highly purified human polymorphonuclear leucocyte collagenase cleaved human alpha-1-proteinase inhibitor (alpha 1-PI) at the carboxyl site of Phe352 (P7). The inhibitor was thereby rapidly inactivated and generated a primary degradation product as shown by reverse-phase HPLC and N-terminal sequencing. Prolonged incubation of the modified inhibitor with polymorphonuclear leucocyte collagenase led to the generation of a secondary degradation product with additional cleavage at the carboxyl site of Pro357 (P2).  相似文献   

4.
Human neutrophils use the H2O2-myeloperoxidase-chloride system to generate chlorinated oxidants capable of activating metalloproteinase zymogens that hydrolyze not only native and denatured collagens, but also the serine proteinase inhibitor (serpin) alpha 1-proteinase inhibitor (alpha 1 PI). To identify the metalloenzyme that hydrolyzes and inactivates alpha 1 PI, neutrophil releasates were chromatographed over gelatin-Sepharose and divided into fractions containing either progelatinase or procollagenase. The gelatinase-containing fraction cleaved alpha 1 PI in a manner inhibitable by native type V, but not type I, collagen. Conversely, while the collagenase-containing fraction also cleaved alpha 1 PI, this activity was inhibited by type I, but not type V, collagen. Because type I and V collagens are competitive substrates for collagenase and gelatinase, respectively, each of the metalloproteinase zymogens were purified to apparent homogeneity and examined for alpha 1 PI-hydrolytic activities. Both purified gelatinase and collagenase inactivated alpha 1PI by hydrolyzing the serpin within its active-site loop at the Phe352-Leu353 and Pro357-Met358 bonds, albeit with distinct kinetic properties. Furthermore, purified collagenase, but not gelatinase, cleaved a second serpin, alpha 1-antichymotrypsin, by hydrolyzing the Ala362-Leu363 bond within its active-site loop. These data demonstrate that human neutrophils use chlorinated oxidants to activate collagenolytic metalloproteinases whose substrate specificities can be extended to members of the serpin superfamily.  相似文献   

5.
1. alpha 1-Proteinase inhibitor was isolated from human plasma by a five-step procedure. Isoelectric focusing showed that six components focused between pH4.85 and 4.95. 2. The mol.wt. of the inhibitor was 52000 by sedimentation equilibrium and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The amino acid and carbohydrate compositions of the inhibitor were also determined. 3. The far-u.v.c.d. (circular-dichroism) spectrum indicated that the inhibitor had about 36% alpha-helical content. 4. The loss of proteinase-inhibitory activity when the inhibitor was exposed to pH values less than 5.0 or greater than 10.5 was accompanied by small changes in the far-u.v.c.d. spectrum and large changes in the near-u.v.c.d. spectrum. The change at alkaline pH was associated with ionization of tyrosine residues. 5. Interaction of inhibitor with chymotrypsin caused perturbation of the c.d. spectrum and this was used to follow the interaction and show a 1:1 stoicheiometry. 6. C.d., electrophoresis and isoelectric focusing showed that the inhibitor-enzyme complex is degraded by free enzyme. 7. Parallel studies with trypsin indicated that it too forms a 1:1 complex with inhibitor and is degraded by excess of enzyme.  相似文献   

6.
7.
Two proteinases (proteinases I and II) have been purified from Crotalus adamanteus venom to the stage of electrophoretic homogeneity and proteinase II has been crystallized. The proteinase differ slightly in molecular weight and amino acid composition. Both are metalloenzymes requiring Zn2+ or Ca2+, or both; neither requires thiol compounds for activation. The proteinases are free of esterolytic activity against benzoly-L-arginine ethyl ester and benzoyl--tyrosine ethyl ester. Proteinase II cleaves the oxidized B chain of insulin at the bonds Phe1-Val2, His5-Leu6, His10-Leu11, Ala14-Leu15, Leu15-Tyr16, and Tyr-16-Leu17. Digestion of polylsine and polyarginine by proteinase II liberates products ranging from dodecapeptides to hexapeptides. Proteinases I and II catalytically inactive human plasma alpha 1-proteinase inhibitor (54,000 daltons). Electrophoretic analysis of the reaction of proteinase II with alpha 1-proteinase inhibitor reveals that an inactivated inhibitor species of 50,000 daltons is formed, and a peptide of 4,000 daltons is released. The gradual disappearance of the native inhibitor results in the corresponding loss of inhibitory activity against trypsin and chymotrypsin.  相似文献   

8.
Peanut agglutinin was acylated with a new heterobifunctional, cleavable photosensitive crosslinking reagent, N-[4-(p-azidophenylazo)benzoyl]-3-aminopropyl-N′-oxysuccinimide ester. The lectin derivative binds specifically and reversibly to neuraminidase-treated human erythrocyte ghosts and upon irradiation covalent attachment of over 35% of the bound lectin occurs. The affinity-crosslinked ghosts were solublized in deoxycholate, immunoprecipitated with anti-peanut agglutinin antiserum, and analyzed by sodium dodecylsulfate polyacrylamine gel electrophoresis. Bands containing both peanut agglutinin and membrane glycoproteins were detected with apparent molecular weights of 58 000, 85 000, 110 000 and 135 000. Upon subsequent cleavage with sodium dithionite, asialoglycophorin A (apparent M.W. 41 000 and 85 000) and a second glycoprotein (apparent M.W. 58 000 – 61 000) were tentatively identified as the receptors for peanut agglutinin in the intact membrane.  相似文献   

9.
It has been found that two active in neutral medium thiol proteinases from bovine spleen, cathepsin L and cathepsin H, bring about rapid and irreversible inactivation of alpha 1-proteinase inhibitor (alpha 1PI)--one of the major plasma inhibitors of serine proteinases. The activity of the enzymes studied did not change upon the interaction with alpha 1PI. With stoichiometric proteinase/inhibitor ratio, the inactivation of alpha 1PI under the effect of cathepsin L was instantaneous, while under the effect of cathepsin H it occurred within 30-60 min. The products of alpha 1PI inactivation had an inhibitory effect on the rate of its reaction with cathepsin L. alpha 1PI inactivation under the action of cathepsin L and cathepsin H was accompanied by the decrease in the molecular mass of the inhibitor from 54 kDA to 46 kDa. This was, probably, caused by the hydrolysis of the peptide bond formed by NH2 group of threonine. The 46 kDa fragment did not undergo further degradation. It did not bind to immobilized trypsin but retained antigenic properties. The results obtained show that the limited proteolysis is a mechanism of the inhibitor inactivation. It is suggested that under some conditions thiol proteinases, upon their release from the cell, participate in the control of effective alpha 1PI concentration.  相似文献   

10.
The elastase inhibitory capacity of alpha 1-proteinase inhibitor (alpha 1-PI) was measured, using a direct and reproducible method, with phagocytic cells maintained in the tissue culture plate through the assay. The oxidative inactivation of alpha 1-PI is known to be mediated by the action of myeloperoxidase (MPO). The fact that hyposialylated IgG (hs IgG) induce the release of MPO prompted us to investigate the effects of such hs IgG on the inhibitory capacity of alpha 1-PI. The results show that 1-PI inactivation was observed only when phagocytic cells were activated by aggregated hs IgG, and not by unaggregated hs IgG. These observations indicate that hyposialylation should be completed by aggregation to perpetuate the oxidative reactions characteristic of inflammatory diseases.  相似文献   

11.
Interaction of human plasma alpha 1-proteinase inhibitor (alpha 1PI) with subtilisin BPN' was assessed by spectrophotometric determination of the inhibitory capacity and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). During the course of incubation of the enzyme and the inhibitor (E : I = 1 : 7.5) at pH 8.0 about 17% of the enzyme activity which had been inhibited initially was regenerated, indicating a temporary type of inhibition. The results of the titration experiments indicate that 9.8 mol of the inhibitor is required to inhibit 1 mol of the enzyme completely. However, patterns of 5% disc SDS-PAGE under non-reducing conditions revealed only an equimolar complex (Mr80K) of alpha 1PI with the enzyme and no other higher Mr component than the native inhibitor (Mr 56K). On the other hand, complete dissociation of the complex occurred under reducing conditions, producing an enzymatically modified inhibitor. When 5 21% gradient slab SDS-PAGE was employed, no complex formation was observed under either reducing or non-reducing conditions. With the gradient gel system, dissociation of the equimolar complex produced different forms of the inhibitor, that is, regeneration of an intact alpha 1PI under non-reducing conditions and an enzymatically modified form under reducing conditions. All these results indicate that the complex formed between subtilisin BPN' and human alpha 1PI is not so stable as that of the inhibitor with bovine chymotrypsin and that no covalent bond may be involved in the complex formation. The results also indicate that human alpha 1PI is not an effective inhibitor of subtilisin BPN' and behaves like a substrate for the enzyme.  相似文献   

12.
Human leukocytes stimulated by opsonized zymosan increase their NADPH oxidase-catalysed reduction of molecular oxygen. This leads to enhanced formation of superoxyl radicals and subsequently hydrogen peroxide. The leukocyte enzyme myeloperoxidase generates the strong microbicidal oxidant hypochlorite from hydrogen peroxide and chloride anions. Hypochlorite inactivates serum alpha 1-proteinase inhibitor, a protein which protects host tissue from digestion by proteinases, that are also secreted by stimulated leukocytes. Micromolar concentrations of a water-soluble, quaternary ammonium analogue of alpha-tocopherol (vitamin E) (3,4-dihydro-6-hydroxy-N,N,N-2,5,7,8-heptamethyl-2H-1-benzopyran-2 -ethanaminium 4-methylbenzenesulfonate) and its tertiary amine derivative (3,4-dihydro-2- (2-dimethylaminoethyl)-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol hydrochloride) were able to protect alpha 1-proteinase inhibitor from inactivation by stimulated human leukocytes. The mechanism of action of the quaternary ammonium analogue was further investigated. Selective inhibition of hydrogen peroxide formation is assumed to be the reason for its protective effect. This compound rapidly reacts with superoxyl radicals, but not with hydrogen peroxide, and is only a weak hypochlorite scavenger. It neither impedes exocytosis of elastase, nor effectively inhibits NADPH oxidase or myeloperoxidase. In contrast, superoxide dismutase, which enhances hydrogen peroxide formation, cannot protect alpha 1-proteinase inhibitor from inactivation.  相似文献   

13.
Incubation of human plasma alpha 1-antichymotrypsin with proteinases from various microbial sources resulted in the enzymatic inactivation of the inhibitor as determined by loss of inhibitory activity against alpha-chymotrypsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the reaction products indicated that intact alpha 1-antichymotrypsin (Mr 67000) had been converted to an inactive form (63000) by limited proteolysis. No stable proteinase/inhibitor complexes were detected, and no random proteolysis of the inactivated inhibitor occurred even after prolonged incubation with the proteinases. Metallo- and serine proteinases from several microbial sources all readily inactivated alpha 1-antichymotrypsin. Since alpha 1-antichymotrypsin is also an early stage acute phase reactant, its inactivation may be important in disrupting bodily defense mechanisms.  相似文献   

14.
N R Matheson  J Travis 《Biochemistry》1985,24(8):1941-1945
Human alpha 1-proteinase inhibitor is easily susceptible to inactivation because of the presence of a methionyl residue at its reactive site. Thus, oxidizing species derived from the myeloperoxidase system (enzyme, H2O2, and C1-), as well as hypochlorous acid, can inactivate this inhibitor, although H2O2 alone has no effect. Butylated hydroxytoluene, a radical scavenger, partially protects alpha 1-proteinase inhibitor from the myeloperoxidase system and completely protects it from hypochlorous acid. Each oxidant also reacts differently with the inhibitor, in that the myeloperoxidase system and hypochlorous acid can each oxidize as many as six methionyl residues, but hypochlorous acid can also oxidize a single tyrosine residue. Myeloperoxidase can be inactivated by hypochlorous acid, by autoxidation in the presence of H2O2 and C1-, as well as by H2O2 alone. Butylated hydroxytoluene completely protects this enzyme from hypochlorous acid inactivation, does not affect the action of H2O2, and enhances autoinactivation. As many as six methionyl residues and two tyrosine residues could be oxidized during autoxidation and six methionine residues by H2O2 alone. Eight methionine residues and one tyrosine residue could be oxidized by hypochlorous acid. The tyrosine residue in myeloperoxidase was oxidized only at a relatively high concentration (600 microM) of hypochlorous acid at which point the enzyme simultaneously and completely lost its enzymatic activity. Loss of activity of myeloperoxidase could also be correlated with the loss of the heme groups present in the enzyme when a relatively high concentration of hypochlorous acid (600 microM) was used and also during autoxidation. It appears that once there is sufficient oxidant to modify one of the tyrosine residues, the heme group itself becomes susceptible.  相似文献   

15.
Human alpha 1-proteinase inhibitor (alpha 1-PI) yielded nine fragments on cleavage with CNBr. The amino acid sequences of these fragments were determined. Three of these CNBr-cleavage fragments, namely fragment I (residues 64-220), fragment II (residues 243-351) and fragment III (residues 1-63), were found to bind rabbit polyclonal antibodies against chemically oxidized alpha 1-PI and mouse polyclonal antibodies against native alpha 1-PI by the Bio-Dot method (enzyme-linked immunosorbent assay on nitrocellulose). These fragments, I, II and III, inhibited by 60%, 25% and 5% respectively the binding between alpha 1-PI and the rabbit antibodies. Fragments I, II and III were subjected to proteolytic digestion, and 15, ten and five peptides were obtained from these fragments respectively. Only four of these peptides showed binding to the mouse antibodies against native alpha 1-PI. These were residues 40-63, 79-86, 176-206 and 299-323. A panel of monoclonal antibodies was prepared by conventional hybridoma technology, with chemically oxidized alpha 1-PI as the antigen. The ability of the monoclonal antibodies to bind native alpha 1-PI and CNBr-cleavage fragments I-III was determined. The monoclonal antibodies fell into three categories. Most (over 90%) belonged to group I, which was capable of binding alpha 1-PI and only fragment I. Antibodies in groups II and III bound alpha 1-PI and either fragment II or fragment III respectively. The ability of the peptides derived from proteolytic digestion of fragments I, II and III to bind three monoclonal antibodies representing each of the three groups was determined. Among all the peptides tested, only one (residues 176-206) derived from fragment I showed binding to the antibodies from group I, one (residues 299-323) derived from fragment II showed binding to the antibodies from group II, and one (residues 40-63) from fragment III showed binding to the antibodies from group III. Each of these three peptides also inhibited the binding between alpha 1-PI and the corresponding monoclonal antibodies. From these data we concluded that at least four epitopic regions (residues 40-63, 79-86, 176-206 and 299-323) were present in alpha 1-PI. Specific monoclonal antibodies to three of these sites were obtained.  相似文献   

16.
The serpin antithrombin is a slow thrombin inhibitor that requires heparin to enhance its reaction rate. In contrast, alpha1-proteinase inhibitor (alpha1PI) Pittsburgh (P1 Met --> Arg natural variant) inhibits thrombin 17 times faster than pentasaccharide heparin-activated antithrombin. We present here x-ray structures of free and S195A trypsin-bound alpha1PI Pittsburgh, which show that the reactive center loop (RCL) possesses a canonical conformation in the free serpin that does not change upon binding to S195A trypsin and that contacts the proteinase only between P2 and P2'. By inference from the structure of heparin cofactor II bound to S195A thrombin, this RCL conformation is also appropriate for binding to thrombin. Reaction rates of trypsin and thrombin with alpha1PI Pittsburgh and antithrombin and their P2 variants show that the low antithrombin-thrombin reaction rate results from the antithrombin RCL sequence at P2 and implies that, in solution, the antithrombin RCL must be in a similar canonical conformation to that found here for alpha1PI Pittsburgh, even in the nonheparin-activated state. This suggests a general, limited, canonical-like interaction between serpins and proteinases in their Michaelis complexes.  相似文献   

17.
K Steube  V Gross  P C Heinrich 《Biochemistry》1985,24(20):5587-5592
The glycosidase endo-beta-N-acetylglucosaminidase F (endo F) from Flavobacterium meningosepticum was used for the deglycosylation of rat alpha 1-proteinase inhibitor (alpha 1 PI). alpha 1 PI containing three oligosaccharide side chains of the complex type was isolated from rat serum or from the medium of rat hepatocyte primary cultures. High-mannose-type alpha 1 PI or hybrid-type alpha 1 PI was isolated from the media of hepatocytes treated with 1-deoxymannojirimycin or swainsonine, respectively. The susceptibility of complex-type alpha 1 PI to endo F was studied in the presence of various detergents. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate and octyl glucopyranoside turned out to be most effective. In the absence of detergents, digestion of alpha 1 PI with high concentrations of endo F and/or long times of incubation led to the formation of alpha 1 PI with one and two oligosaccharide side chains. In the presence of 0.5% octyl glucopyranoside, the major cleavage products were unglycosylated alpha 1 PI and alpha 1 PI carrying one carbohydrate side chain. In contrast to the complex-type alpha 1 PI, the high-mannose type can be totally deglycosylated by endo F even in the absence of detergents. The susceptibility of the hybrid-type alpha 1 PI to endo F is between that of the complex and the high-mannose types.  相似文献   

18.
The effect of glucose/Cu2+ incubation on (a) pure methionine oxidation, (b) the oxidation of active-site methionine in alpha 1-proteinase inhibitor (alpha 1PI) and (c) the resulting activity and structural changes of this inhibitor was investigated. While no methionine was oxidized during a 24 day, 37 degrees C incubation with 0.01 M EDTA and 100 mM glucose, 64.2% oxidation occurred in 6 days when 0.01 mM Cu2+ was added to the 100 mM glucose. The first-order rate constant for oxidation in 10 mM glucose, 0.01 mM Cu2+ was 0.0218 day-1. Oxidation was inhibited by catalase, but accelerated by ascorbate ion. The active-site methionyl residue of alpha 1PI was oxidized 71.3% after a 4 day incubation in 100 mM glucose, 0.01 mM Cu2+ (pH 7.45), 0.1 M phosphate buffer. The elastase and trypsin inhibiting activities were lowered to 3.1 and 1.5% of control samples during this incubation. The inclusion of 1 mM DETAPAC, a transition metal chelator, resulted in a 98 + % retention of activity. Intrinsic fluorescence (350 nm excitation, 415 nm emission) of alpha 1PI increased 576% over control for the sample incubated in 100 mM glucose, 0.01 mM Cu2+ and SDS-PAGE revealed protein fragment molecular weights of 44.4 and 39.8 kDa. These studies suggest that both methionine oxidation and free radical induced fragmentation contribute to loss of alpha 1PI activity during glucose/Cu2+ incubations.  相似文献   

19.
We have examined the effect of the myeloperoxidase-hydrogen peroxide-halide system and of activated human neutrophils on the ability of serum alpha 1-protease inhibitor (alpha 1-PI) to bind and inhibit porcine pancreatic elastase. Exposure to the isolated myeloperoxidase system resulted in nearly complete inactivation of alpha 1-PI. Inactivation was rapid (10 to 20 s); required active myeloperoxidase, micromolar concentrations of H2O2 (or glucose oxidase as a peroxide generator), and a halide cofactor (Cl- or I-); and was blocked by azide, cyanide, and catalase. Intact neutrophils similarly inactivated alpha 1-PI over the course of 5 to 10 min. Inactivation required the neutrophils, a halide (Cl-), and a phorbol ester to activate secretory and metabolic activity. It was inhibited by azide, cyanide, and catalase, but not by superoxide dismutase. Neutrophils with absent myeloperoxidase or impaired oxidative metabolism (chronic granulomatous disease) failed to inactivate alpha 1-PI, and these defects were specifically corrected by the addition of myeloperoxidase or H2O2, respectively. Thus, stimulated neutrophils secrete myeloperoxidase and H2O2 which combine with a halide to inactivate alpha 1-PI. We suggest that leukocyte-derived oxidants, especially the myeloperoxidase system, may contribute to proteolytic tissue injury, for example in elastase-induced pulmonary emphysema, by oxidative inactivation of protective antiproteases.  相似文献   

20.
Isolation and properties of human plasma alpha-1-proteinase inhibitor   总被引:17,自引:0,他引:17  
R Pannell  D Johnson  J Travis 《Biochemistry》1974,13(26):5439-5445
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号