首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of both the DNA and protein sequences of catabolite gene activator protein (CAP) with the sequences of lac and gal repressors shows significant homologies between a sequence that forms a two alpha-helix motif in CAP and sequences near the amino terminus of both repressors. This two-helix motif is thought to be involved in specific DNA sequence recognition by CAP. The region in lac repressor to which CAP is homologous contains many i-d mutations that are defective in DNA binding. Less significant sequence homologies between CAP and phage repressors and activators are also shown. The amino acid residues that are critical to the formation of the two-helix motif are conserved, while those residues expected to interact with DNA are variable. These observations suggest the lac and gal repressors also have a two alpha-helix structural motif which is involved in DNA binding and that this two helix motif may be generally found in many bacterial and phage repressors. We conclude that one major mechanism by which proteins can recognize specific base sequences in double stranded DNA is via the amino acid side chains of alpha-helices fitting into the major groove of B-DNA.  相似文献   

2.
3.
4.
The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~ 30 amino acid eukaryotic zinc finger motif in which a β-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands.  相似文献   

5.
The basic-helix-loop-helix-zipper (bHLH-Zip) motif is a conserved region of approximately 70 amino acids that mediates both sequence-specific DNA binding and protein dimerization. This motif is found in protein sequences from many eukaryotic organisms and is contained in the protein sequence of the oncogene myc and its partner max, and a shortened version of the motif (bHLH) is found in the muscle determination factor myoD and its partner E12. An evaluation of the conserved amino acids that define the motif coupled with the published mutagenic studies of this region has led to our formulation of a molecular model for the binding of this motif as a dimer to specific sequences of DNA. This model has the dimeric protein interacting with an abutted, dyad-symmetric DNA sequence. Helix 2 of each monomer is modeled as a coiled-coil extension of the C-terminal "leucine zipper." Helix 1 does not interact with helix 1 from its partner in the dimer but with the hydrophobic surface created when the helix 2 regions of the dimer interact with each other as a coiled-coil. Sequence-specific interactions are proposed between the basic region and the invariant cis elements that all bHLH-Zip proteins bind.  相似文献   

6.
Knowledge of the three-dimensional structure of the bacteriophage λ Cro repressor, combined with an analysis of amino acid sequences and DNA coding sequences for this and other proteins that recognize and bind specific base sequences of double-helical DNA, suggests that a portion of the structure of the Cro repressor that is involved in DNA binding also occurs in the Cro protein from bacteriophage 434, the cII protein from bacteriophage λ, the Salmonella phage P22 c2 repressor and the cI repressor from bacteriophage λ. This α-helical super-secondary structure may be a common structural motif in proteins that bind double-helical DNA in a base sequence-specific manner.  相似文献   

7.
8.
9.
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.  相似文献   

10.
11.
There is considerable interest in molecules that bind to telomeric DNA sequences and G-quadruplexes with specificity. Such molecules would be useful to test hypotheses for telomere length regulation, and may have therapeutic potential. The versatility and modular nature of the zinc finger motif makes it an ideal candidate for engineering G-quadruplex-binding proteins. Phage display technology has previously been widely used to screen libraries of zinc fingers for binding to novel duplex DNA sequences. In this study, a three-finger library has been screened for clones that bind to an oligonucleotide containing the human telomeric repeat sequence folded in the G-quadruplex conformation. The selected clones show a strong amino acid consensus, suggesting analogous modes of binding. Binding was found to be both sequence dependent and structure specific. This is the first example of an engineered protein that binds to G-quadruplex DNA, and represents a new type of binding interaction for a zinc finger protein.  相似文献   

12.
根据已报道的小麦Pinb基因的保守序列,设计合成了1对特异性引物,对二角山羊草(Aegilops bicornis,SS)的基因组DNA进行Pinb基因扩增、克隆、序列分析,发现了1个新型Pinb等位基因,基因长360bp,编码119个氨基酸残基,对应于麦类作物PinB成熟蛋白结构区域,具有其特有的WPTKWWK色氨酸结构域和10个半胱氨酸所形成的5个二硫键结构。与软粒小麦cv.Capitole的Pinb-D1a相比较,其核苷酸和氨基酸同源性分别为93.1%和91.6%。RT-PCR证实了Pinb基因在籽粒胚乳中的表达。研究结果表明,二角山羊草中包含着与小麦差异较大的籽粒硬度控制基因,为栽培小麦品质改良提供了丰富的遗传资源。  相似文献   

13.
14.
15.
16.
17.
The Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein. CAP contains a unique solvent-accessible cysteine residue at amino acid 10 of the helix-turn-helix motif. In published work, we have constructed a prototype semi-synthetic site-specific DNA cleavage agent from CAP by use of cysteine-specific chemical modification to incorporate a nucleolytic chelator-metal complex at amino acid 10 of the helix-turn-helix motif [Ebright, R., Ebright, Y., Pendergrast, P.S. and Gunasekera, A., Proc. Natl. Acad. Sci. USA 87, 2882-2886 (1990)]. Construction of second-generation semi-synthetic site-specific DNA cleavage agents from CAP requires the construction of derivatives of CAP having unique solvent-accessible cysteine residues at sites within CAP other than amino acid 10 of the helix-turn-helix motif. In the present work, we have constructed and characterized two derivatives of CAP having no solvent-accessible cysteine residues: [Ser178]CAP and [Leu178]CAP. In addition, in the present work, we have constructed and characterized one derivative of CAP having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif: [Cys170;Ser178]CAP.  相似文献   

18.
alpha-helices within proteins are often terminated (capped) by distinctive configurations of the polypeptide chain. Two common arrangements are the Schellman motif and the alternative alpha(L) motif. Rose and coworkers developed stereochemical rules to identify the locations of such motifs in proteins of unknown structure based only on their amino acid sequences. To check the effectiveness of these rules, they made specific predictions regarding the structural and thermodynamic consequences of certain mutations in T4 lysozyme. We have constructed these mutants and show here that they have neither the structure nor the stability that was predicted. The results show the complexity of the protein-folding problem. Comparison of known protein structures may show that a characteristic sequence of amino acids (a sequence motif) corresponds to a conserved structural motif. In any particular protein, however, changes in other parts of the sequence may result in a different conformation. The structure is determined by sequence as a whole, not by parts considered in isolation.  相似文献   

19.
The binding of E. coli catabolite gene activator protein (CAP) to non-specific sequences of DNA has been modelled as an electrostatic interaction between four basic side chains of the CAP dimer and the charged phosphates of DNA. Calculation of the electrostatic contribution to the binding free energy at various separations of the two molecules shows that complex formation is favored when CAP and DNA are separated by as much as 12 A. Thus, the long range electrostatic interactions may provide the initial energy for complex formation and also the correct relative orientation of CAP and DNA. The non-specific complex does not involve the penetration of amino acid side chains into the major grooves of DNA and permits 'sliding' of the protein along DNA, which would enhance the rate of association of CAP with the specific site as has been proposed previously for lac repressor. We propose that, as it 'slides', CAP is moving in and out of the major grooves in order to sample the DNA sequence. Recognition of the specific DNA site is achieved by a complementarity in structure and hydrogen bonding between amino acids and the edges of base pairs exposed in the major grooves of DNA.  相似文献   

20.
Evidence for a repeating domain in type I restriction enzymes.   总被引:19,自引:10,他引:9       下载免费PDF全文
P Argos 《The EMBO journal》1985,4(5):1351-1355
The primary structures of the recognition subunit (hsdS) in type I restriction enzymes from three isolates of Escherichia coli were compared and aligned by use of amino acid physical properties. A repeating domain was found in each of the subunits suggesting a pseudo-dimeric structure. Secondary structure predictions delineated two helical regions in each domain which suggested that the recognition subunits may act in a fashion similar to that proposed for repressor and activator molecules; namely, interaction with double-stranded DNA through helices and in two successive major grooves on the same DNA side. One helical motif could provide the specific recognition site and the other, the restriction site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号