首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with Ps > 5.0 × 10− 6 cm/s at 10 °C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (Ea > 10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by > 60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

2.
3.
4.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

5.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

6.
Molecular and functional characterization of an amphibian urea transporter.   总被引:4,自引:0,他引:4  
We report the characterization of a frog (Rana esculenta) urea transporter (fUT). The cloned cDNA is 1.4 kb long and contains a putative open reading frame of 1203 bp. In frog urinary bladder, the gene is expressed as two mRNAs of 4.3 and 1.6 kb. The fUT protein is 63.1 and 56.3% identical to rat UT-A2 and UT-B1, respectively. The internal duplication of UT-A2 and UT-B, as well as the double LP box urea transporter signature sequence were found in this amphibian urea transporter. When expressed in Xenopus oocytes, fUT induced a 10-fold increase in urea permeability, which was blocked by both phloretin and mercurial reagents. The fUT protein did not transport thiourea, but the fUT-mediated urea transport was strongly inhibited by this compound. Thus, this amphibian urea transporter displays transport characteristics in between those of UT-A2 and UT-B.  相似文献   

7.
Jk (kidd) blood group antigens are carried by the urea transporter UT-B[1,2]. The Jknull phenotype, lack-ing urea permeability in erythrocytes[3,4], has a very low frequency in all populations except Polynesians and Finns[5]. In Japan, only 14 individuals with Jk (a-b-) phenotype were identified from 638460 screened donor’s blood samples using the 2 mol/L urea solution hemolysis test[6]. The frequency of Jknull is 0.27% in Polynesian, about 0.03% in Finland[7], and extremely rare in Fran…  相似文献   

8.
Urea transporter B (UT-B, encoded by the SLC14A1 gene) is a membrane channel protein involved in urea transmembrane transport. Compared with normal tissues, UT-B expression is significantly decreased in most tumours, especially melanoma. However, the UT-B role in tumorigenesis and development is still unclear. Herein, we investigated the effects of UT-B overexpression on polyamine metabolism and the urea cycle in murine melanoma B16 cells, to explore the roles of mitochondrial dysfunction and p53 activation in cell growth and polyamines metabolism. UT-B overexpression in B16 cells decreased cell growth, increased apoptosis, and significantly altered metabolic pathways related to the urea cycle, which were characterized by reduced production of urea and polyamines and increased production of nitric oxide. Subsequently, we observed that activation of the p53 pathway may be the main cause of the above phenomena. The p53 inhibitor pifithrin-α partially restored the production of polyamines, but the mitochondrial morphology and function were still impaired. Further treatment of UT-B-overexpressing B16 cells with reactive oxygen species scavenging agent N-acetyl-l-cysteine and coenzyme Q10 restored cell viability and mitochondrial function and increased polyamine production. In conclusion, UT-B overexpression caused mitochondrial dysfunction and increased oxidative stress in B16 cells, and then activated p53 expression, which may be one of the mechanisms leading to the decrease in intracellular polyamines.  相似文献   

9.
Urea transporter UT-B has been proposed to be the major urea transporter in erythrocytes and kidney-descending vasa recta. The mouse UT-B cDNA was isolated and encodes a 384-amino acid urea-transporting glycoprotein expressed in kidney, spleen, brain, ureter, and urinary bladder. The mouse UT-B gene was analyzed, and UT-B knockout mice were generated by targeted gene deletion of exons 3-6. The survival and growth of UT-B knockout mice were not different from wild-type littermates. Urea permeability was 45-fold lower in erythrocytes from knockout mice than from those in wild-type mice. Daily urine output was 1.5-fold greater in UT-B- deficient mice (p < 0.01), and urine osmolality (U(osm)) was lower (1532 +/- 71 versus 2056 +/- 83 mosM/kg H(2)O, mean +/- S.E., p < 0.001). After 24 h of water deprivation, U(osm) (in mosM/kg H(2)O) was 2403 +/- 38 in UT-B null mice and 3438 +/- 98 in wild-type mice (p < 0.001). Plasma urea concentration (P(urea)) was 30% higher, and urine urea concentration (U(urea)) was 35% lower in knockout mice than in wild-type mice, resulting in a much lower U(urea)/P(urea) ratio (61 +/- 5 versus 124 +/- 9, p < 0.001). Thus, the capacity to concentrate urea in the urine is more severely impaired than the capacity to concentrate other solutes. Together with data showing a disproportionate reduction in the concentration of urea compared with salt in homogenized renal inner medullas of UT-B null mice, these data define a novel "urea-selective" urinary concentrating defect in UT-B null mice. The UT-B null mice generated for these studies should also be useful in establishing the role of facilitated urea transport in extrarenal organs expressing UT-B.  相似文献   

10.
Glutamate transport is coupled to the co-transport of 3 Na(+) and 1 H(+) followed by the counter-transport of 1 K(+). In addition, glutamate and Na(+) binding to glutamate transporters generates an uncoupled anion conductance. The human glial glutamate transporter EAAT1 (excitatory amino acid transporter 1) also allows significant passive and active water transport, which suggests that water permeation through glutamate transporters may play an important role in glial cell homoeostasis. Urea also permeates EAAT1 and has been used to characterize the permeation properties of the transporter. We have previously identified a series of mutations that differentially affect either the glutamate transport process or the substrate-activated channel function of EAAT1. The water and urea permeation properties of wild-type EAAT1 and two mutant transporters were measured to identify which permeation pathway facilitates the movement of these molecules. We demonstrate that there is a significant rate of L-glutamate-stimulated passive and active water transport. Both the passive and active L-glutamate-stimulated water transport is most closely associated with the glutamate transport process. In contrast, L-glutamate-stimulated [(14)C]urea permeation is associated with the anion channel of the transporter. However, there is also likely to be a transporter-specific, but glutamate independent, flux of water via the anion channel.  相似文献   

11.
The UT-A (SLC14a2) and UT-B (SLC14a1) genes encode a family of specialized urea transporter proteins that regulate urea movement across plasma membranes. In this report, we describe the structure of the bovine UT-B (bUT-B) gene and characterize UT-B expression in bovine rumen. Northern analysis using a full-length bUT-B probe detected a 3.7-kb UT-B signal in rumen. RT-PCR of bovine mRNA revealed the presence of two UT-B splice variants, bUT-B1 and bUT-B2, with bUT-B2 the predominant variant in rumen. Immunoblotting studies of bovine rumen tissue, using an antibody targeted to the NH2-terminus of mouse UT-B, confirmed the presence of 43- to 54-kDa UT-B proteins. Immunolocalization studies showed that UT-B was mainly located on cell plasma membranes in epithelial layers of the bovine rumen. Ussing chamber measurements of ruminal transepithelial transport of (14)C-labeled urea indicated that urea flux was characteristically inhibited by phloretin. We conclude that bUT-B is expressed in the bovine rumen and may function to transport urea into the rumen as part of the ruminant urea nitrogen salvaging process.  相似文献   

12.
13.
Summary Isolated gastric mucosa of the skate shows marked changes in acid secretory rate (J H ), electrical potential difference (PD), and transepithelial resistance (R) with changes in mucosal bathing solution composition and a constant serosal solution. Removal of the 350 mM urea usually present in the mucosal solution reduces acid secretory rate by 25%, while adding urea to 1 M has no significant effect. Complete removal of osmotic solutes (distilled water) inhibits secretion by 78%, isotonic urea (no salts) inhibits by 54%, while isotonic salts alone (no urea) gives control secretory rates. The changes in PD and R are consistent with acid secretory changes. Theory and experience with terrestrial organisms would not predict these changes. The most likely explanation is osmotic swelling and shrinking of the surface cells, and occlusion of the secretory tubules in the swollen condition. Since marine species never encounter hypo- or hyperosmotic conditions due to food ingestion, their surface cells may be water permeable, unlike the situation in terrestrial and fresh water animals.Abbreviations J H acid secretory rate per square centimetre tissue area - OC oxyntic cell - PBC pit border cell - PD transepithelial electrical potential difference - R transepithelial electrical resistance per square centimetre tissue area - SEC Surface epithelial cell  相似文献   

14.
Molecular Mechanisms of Urea Transport   总被引:6,自引:0,他引:6  
Physiologic data provided evidence for specific urea transporter proteins in red blood cells and kidney inner medulla. During the past decade, molecular approaches resulted in the cloning of several urea transporter cDNA isoforms derived from two gene families: UT-A and UT-B. Polyclonal antibodies were generated to the cloned urea transporter proteins, and their use in integrative animal studies resulted in several novel findings, including: (1) UT-B is the Kidd blood group antigen; (2) UT-B is also expressed in many non-renal tissues and endothelial cells; (3) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (4) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; and (5) UT-A protein abundance is increased in uremia in both liver and heart. This review will summarize the knowledge gained from studying molecular mechanisms of urea transport and from integrative studies into urea transporter protein regulation.  相似文献   

15.
The routes water takes through membrane barriers is still a matter of debate. Although aquaporins only allow transmembrane water movement along an osmotic gradient, cotransporters are believed to be capable of water transport against the osmotic gradient. Here we show that the renal potassium-chloride-cotransporter (KCC1) does not pump a fixed amount of water molecules per movement of one K+ and one Cl, as was reported for the analogous transporter in the choroid plexus. We monitored water and potassium fluxes through monolayers of primary cultured renal epithelial cells by detecting tiny solute concentration changes in the immediate vicinity of the monolayer. KCC1 extruded K+ ions in the presence of a transepithelial K+ gradient, but did not transport water. KCC1 inhibition reduced epithelial osmotic water permeability Pf by roughly one-third, i.e., the effect of inhibitors was small in resting cells and substantial in hormonal stimulated cells that contained high concentrations of aquaporin-2 in their apical membranes. The furosemide or DIOA (dihydroindenyl-oxy-alkanoic acid)-sensitive water flux was much larger than expected when water passively followed the KCC1-mediated ion flow. The inhibitory effect of these drugs on water flux was reversed by the K+-H+ exchanger nigericin, indicating that KCC1 affects water transport solely by K+ extrusion. Intracellular K+ retention conceivably leads to cell swelling, followed by an increased rate of endocytic AQP2 retrieval from the apical membrane.  相似文献   

16.
The aim of this study was to investigate the manner of urea-modulated UT-B urea transporter (UT) internalization in infantile hemangioma-derived vascular endothelial cells (HemECs). The immunohistochemistry assay was performed to identify infancy hemangioma-derived endothelial cell line (XPTS-1) cells. Cell toxicity was detected with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Quantitative real-time polymerase chain reaction and Western blot analysis were measured to analyze the expression of UT-B. UT-B internalization was observed by confocal microscopy. The clathrin inhibitor chlorpromazine (CPZ) and caveolin endocytic disrupter methyl-β-cyclodextrin (MβCD) were used in XPTS-1 cells transfected with UT-B-GFP to repress endocytosis. Urea-promoted UT-B expression in a concentration-dependent manner in an infantile XPTS-1 cell line. CPZ and MβCD significantly inhibited UT-B protein internalization. The pretreatment of UT-B-GFP cells with adaptor protein2 (AP2)-μ2-siRNA and caveolin-siRNA significantly inhibited UT-B protein internalization. Our findings suggested that urea-mediated UT-B UT internalization is clathrin and caveolae dependent in infantile HemECs.  相似文献   

17.
18.
Aging is commonly associated with defective urine-concentrating ability. The present study examined how the kidney and the brain of senescent (30-mo-old) female WAG/Rij rats respond to dehydration induced by 2 days of water deprivation in terms of urea transporter (UT) regulation. In euhydrated situation, senescent rats exhibited similar vasopressin plasma level but lower urine osmolality and papillary urea concentration and markedly reduced kidney UT-A1, UT-A3, and UT-B1 abundances compared with adult (10-mo-old) rats. Senescent rats responded to dehydration similarly to adult rats by a sixfold increase in vasopressin plasma level. Their papillary urea concentration was doubled, without, however, attaining that of dehydrated adult rats. Such an enhanced papillary urea sequestration occurred with a great fall of both UT-A1 and UT-A3 abundances in the tip of inner medulla and an increased UT-A1 abundance in the base of inner medulla. UT-A2 and UT-B1 were unchanged. These data suggest that the inability of control and thirsted senescent rats to concentrate urine as much as their younger counterparts derives from lower papillary urea concentration. In aging brain, UT-B1 abundance was increased twofold together with a fourfold increase in aquaporin-4 abundance. Dehydration did not alter the abundance of these transporters.  相似文献   

19.
Urea transport in the kidney is mediated by a family of transporter proteins, including renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). We aimed to determine whether hydration status affects the subcellular distribution of urea transporters. Male Sprague-Dawley rats were divided into three groups: dehydrated rats (WD) given minimum water, hydrated rats (WL) given 3% sucrose in water for 3 days before death, and control rats given free access to water. We labeled kidney sections with antibodies against UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B using preembedding immunoperoxidase and immunogold methods. In control animals, UT-A1 and UT-A3 immunoreactivities were observed throughout the cytoplasm in inner medullary collecting duct (IMCD) cells, and weak labeling was observed on the basolateral plasma membrane. UT-A2 immunoreactivity in the descending thin limbs (DTL) was observed mainly on the apical and basolateral membranes of type I epithelium, and very faint labeling was observed in the long-loop DTL at the border between the outer and inner medulla. UT-A1 immunoreactivity intensity was markedly lower, and UT-A3 immunoreactivity was higher in IMCD of WD vs. controls. UT-A2 immunoreactivity intensities in the plasma membrane and cytoplasm of type I, II, and III epithelia of DTL were greater in WD vs. controls. In contrast, UT-A1 expression was greater and UT-A2 and UT-A3 expressions were lower in WL vs. controls. The subcellular distribution of UT-A in DTL or IMCD did not differ between control and experimental animals. UT-B was expressed in the plasma membrane of the descending vasa recta of both control and experimental animals. UT-B intensity was higher in WD and lower in WL vs. controls. These data indicate that changes in hydration status over 3 days affected urea transporter protein expression without changing its subcellular distribution.  相似文献   

20.
A urea-selective urine-concentrating defect was found in transgenic mice deficient in urea transporter (UT)-B. To determine the role of facilitated urea transport in extrarenal organs expressing UT-B, we studied the kinetics of [14C]urea distribution in UT-B-null mice versus wild-type mice. After renal blood flow was disrupted, [14C]urea distribution was selectively reduced in testis in UT-B-null mice. Under basal conditions, total testis urea content was 335.4 ± 43.8 µg in UT-B-null mice versus 196.3 ± 18.2 µg in wild-type mice (P < 0.01). Testis weight in UT-B-null mice (6.6 ± 0.8 mg/g body wt) was significantly greater than in wild-type mice (4.2 ± 0.8 mg/g body wt). Elongated spermatids were observed earlier in UT-B-null mice compared with wild type mice on day 24 versus day 32, respectively. First breeding ages in UT-B knockout males (48 ± 3 days) were also significantly earlier than that in wild-type males (56 ± 2 days). In competing mating tests with wild-type males and UT-B-null males, all pups carried UT-B-targeted genes, which indicates that all pups were produced from breeding of UT-B-null males. Experiments of the expression of follicle-stimulating hormone receptor (FSHR) and androgen binding protein (ABP) indicated that the development of Sertoli cells was also earlier in UT-B-null mice than that in wild-type mice. These results suggest that UT-B plays an important role in eliminating urea produced by Sertoli cells and that UT-B deletion causes both urea accumulation in the testis and early maturation of the male reproductive system. The UT-B knockout mouse may be a useful experimental model to define the molecular mechanisms of early puberty. urea transporter; Sertoli cell; testis; male sexual function; spermatogenesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号