首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of fruits and treatment with SADH (succinic acid 2,2-dimethylhydrazide) were used to change the balance between sources and sinks for photosynthates in Malus domestica‘Golden Delicious’. Sorbitol and sugar content were measured in bleeding sap, in xylem sap prepared by suction, and in 80% methanol extracts of the roots. Concentration as well as total amount of sorbitol in bleeding sap sampled in July and September were lower in fruiting than in defruited trees, and so was the total amount of sorbitol in xylem sap from the trunk. SADH treatment tended to reduce the sorbitol content. Sorbitol in root extracts, expressed as percentage of methanol (80%) insoluble root dry matter, was highest in fruiting trees; but root dry matter was here less than half of that in defruited trees. Sorbitol content in xylem sap as well as sorbitol + sugar percentage of roots showed a distinct maximum in late winter followed by a heavy decrease during spring. It is suggested that sorbitol in xylem sap during the growth season represents a return transport from the roots, and that the level of sorbitol in this return transport reflects, to a certain degree, the ratio between leaf area and assimilate demand by the tree.  相似文献   

2.
Poul  Hansen 《Physiologia plantarum》1970,23(3):564-573
Following application of 14CO2 to fruit spur leaves, the majority of the 14C absorbed is transfered to the fruit on the same spur, and the total content of 14C within the leaf-fruit system as a whole remains virtually constant with time. The considerable reduction in activity in the leaves is accounted for mainly by a decrease in the amount of 14C-sorbitol, although relatively speaking the decrease in 14C-sucrose is also considerable. The major part of the activity of the sugar fraction in the conducting tissues between blade and fruit (petiol, spur) is found in sorbitol. Immediately following uptake of 14C yia the leaves a large part of the activity of the sugar fraction in the fruit is found in sorbitol; but this activity is rapidly reduced, accompanied by an increase in sucrose activity, and over longer periods of time increases in particular in glucose and fruclose activity, and in that of methanol insoluble compounds. The changes in activity distribution in the fruit vary with the variety of fruit and the dates within the growing season. By injecting labelled sorbitol directly into the fruit sorbitol is converted into sucrose, glucose and fructose, while injection of labelled sucrose, glucose and fructose has yielded proof of interconversions between these compounds but no measurable amounts of surbitol. After application of 14CO2 directly to the outer skin of the fruit considerably less of the activity is found in sorbitol than is the case in leaves following exposure to 14CO2. A minor, but significant, translocation of 14C away from the fruit was found to take place following the application of labelled 14C compounds to the fruit. The smallness of the respiratory loss of 14C in the leaf-fruit system is discussed. It is concluded that in apple trees considerable translocation occurs in the form of sorbitol which in the fruits rapidly converted into other compounds.  相似文献   

3.
Poul  Hansen 《Physiologia plantarum》1967,20(4):1103-1111
The present paper reports an attempt to elucidate the storage and mobilization processes in 1-year-old apple rootstocks by studying the 14C content of different parts of the tree following application of 14CO2. The translocation of the 14C taken up from the leaves to other parts proceeds at the highest rate during the first few days after the application of 14C. The distribution in shoots, trunk and roots after application of 14C during May, July, August, and in part of September depends in particular upon the intensity of growth in the various parts. From the lime of the application of 14C until leaf-fall, 40–50 per cent of the 14C initially absorbed disappears from the tree. After exposure to 14C during October, and in part of September, a relatively large part of the 14C applied goes to the root. In this case there is a considerable reduction in the 14C-conlent from leaf-fall to the following spring after leafing, especially in the root, although relatively speaking reduction is also considerable in the bark of the parts above ground, and it is most pronounced in the methanol (80 %) soluble fraction. The reduction takes place primarily during spring, and comprises, after application during October, for the whole tree 20–25 per cent of the 14C initially absorbed. Only 13–17 per cent of this amount was recovered in the newly developed shoots and leaves in the following June.  相似文献   

4.
John Pate  David Arthur 《Oecologia》1998,117(3):301-311
A recently described phloem-bleeding technique was used to study seasonal changes in δ13C, sugar levels and the amino acid:sugar balance of phloem translocate of 2- to 3-year old trees of Eucalyptus globulus at a rain-fed site (Eulup) and a waste-effluent-irrigated site (Albany) in south-west Australia. δ13C of phloem sap from the Eulup site fluctuated widely between winter (−27.6‰) and peak summer stress (−20.2‰), compared with a much smaller range of −28.4 to −26.3 at Albany. Seasonal changes in sugar concentrations in sap fluctuated closely with those of phloem δ13C, with highest concentrations and least negative δ13C values at times of greatest soil water deficit. Molar ratios of amino acids to sugars in phloem sap were similar between plantations in winter through to early summer. They then remained high at the nitrogen-rich effluent-treated site, but fell dramatically once soils dried out at Eulup. Mature leaf dry matter sampled at peak yearly stress (early autumn) showed more negative δ13C values than concurrently harvested phloem sap or recently initiated shoot apex dry matter, presumably because the sampled foliage had laid down its structural carbon earlier under relatively unstressed winter/spring conditions. Differences between Albany and Eulup were much greater for δ13C of phloem and new apical dry matter than for dry matter of mature foliage. Comparisons of δ13C signatures of phloem sap carbon with those of dry matter of nascent xylem tissues showed seasonal fluctuations in δ13C of phloem translocate which were mirrored a month or so later by those for xylem carbon. δ13C analyses of trunk growth rings from Eulup and Albany showed well-defined seasonal oscillations over the first 2 or 3 years of growth until irrigation commenced at Albany. Fluctuations in δ13C at the latter site then became noticeably less pronounced than at Eulup. Future use of phloem sap δ13C and solute analyses for studying seasonal water and nutrient status of E. globulus is discussed. Received: 9 April 1998 / Accepted: 20 August 1998  相似文献   

5.
The formation and subsequent conversions of 14C-labelled compounds were followed in fruits of Malus domestica cvs. Golden Delicious and Cox's Orange Pippin after labelling proximate leaves with 14CO2 at different times during the growing season. A few hours after labelling of the leaves, the larger share of fruit 14C was detected in sorbitol. This share descreased rapidly except in the late autumn. When labelling about 1 July (c. 1 month after bloom), 40–60% of the fruit 14C was permanently fixed in the methanol and water insoluble fraction. 25% or more was primarily found in organic acids, but this declined during the season to a few per cent. When labelling at the end of July, the dominating feature was the establishment of a peak of temporarily insoluble 14C, returning back to the soluble form through October and November. This was particularly pronounced in‘Cox's Organe Pippin'. Labelling with 14C at the end of August and at the end of September yielded increasing amounts of 14C in sugars. The labelling of fructose predominated, but as the autumn progressed the amount of label in sucrose increased. This was due to a conversion from 14C-compounds of older origin as well as to a larger share of the imported assimilates turning into sucrose at this time of the year. During prolonged storage of harvested fruits at 3°C, 14C in fructose increased at the expense of 14C in sucrose.  相似文献   

6.
Heterotrophic gains of carbon from various host species by the root hemiparasitic shrub Olax phyllanthi (Labill) R.Br. were assessed using techniques based on carbon isotope discrimination (13C) on C3 and C4 hosts and C:N ratios of xylem sap and dry matter of host and parasite. Heterotrophic benefits (H) to Olax based on 13C values were 30% and 19% from two nonnative C4 hosts (Portulaca oleracea and Amaranthus caudatus respectively) compared with 13% and 15% from these hosts when computed on the basis of C:N ratios of host xylem sap and C and N increments of Olax dry matter. Nitrate was the source of N available to pot cultures of the above species and estimates based on C:N ratios assumed that all N accumulated by Olax had come from nitrate absorbed by the host. Equivalent estimates of H for Olax, grown in nitrogen-free pot culture with the native N2-fixing host Acacia littorea as its sole source of N, indicated 63% and 51% dependence on host carbon when assessed in terms of xylem sap composition of host parasite respectively. Comparisons of xylem sap solutes of Olax and a range of partner hosts indicated marked selectivity in haustorial uptake and transfer of nitrate, amino compounds, organic acids and sugars. Possible implications of variations between hosts in absolute levels of C and inorganic and organic forms of N in xylem are discussed in relation to evidence of much better growth performance of Olax on Acacia littorea and other N2-fixing legumes than on non-fixers.  相似文献   

7.
Poul  Hansen 《Physiologia plantarum》1967,20(3):720-725
The photosynthates from leaves from extension shoots may be used either for new growth of the shoot itself, or for growth in other parts of the tree. An attempt has been made to elucidate this problem by determining the content of 14C in long shoots to which 14CO2 was applied either through fully developed leaves at the base, or through very young leaves at the apex. In the case of 14C application at the base, 80 per cent or more of the 14C initially taken up disappears from the shoot, and only a very minor part is translocated upwards in the shoot. When the leaves at the apex are exposed, on the other hand, 80 per cent of the 14C absorbed is retained in the leaves and shoot components treated as long as there is still considerable terminal growth taking place, although a small percentage is deposited in the lower parts of the shoot. At the same time, a much higher proportion is incorporated into methanol-insoluble components. As terminal growth decreases, a larger proportion of the 14C activity of the apex leaves also disappears from the shoot. The distribution of activity between the sorbitol, sucrose, glucose and fructose fractions was not significantly different in young and in fully developed leaves. The 14C labelling in the sugar fraction was highest for sorbitol, then sucrose, but decreases with time compared to glucose and fructose.  相似文献   

8.
In this paper, we present an integrated account of the diurnal variation in the stable isotopes of water (δD and δ18O) and dry matter (δ15N, δ13C, and δ18O) in the long‐distance transport fluids (xylem sap and phloem sap), leaves, pod walls, and seeds of Lupinus angustifolius under field conditions in Western Australia. The δD and δ18O of leaf water showed a pronounced diurnal variation, ranging from early morning minima near 0‰ for both δD and δ18O to early afternoon maxima of 62 and 23‰, respectively. Xylem sap water showed no diurnal variation in isotopic composition and had mean values of ?13·2 and ?2·3‰ for δD and δ18O. Phloem sap water collected from pod tips was intermediate in isotopic composition between xylem sap and leaf water and exhibited only a moderate diurnal fluctuation. Isotopic compositions of pod wall and seed water were intermediate between those of phloem and xylem sap water. A model of average leaf water enrichment in the steady state (Craig & Gordon, pp. 9–130 in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Lischi and Figli, Pisa, Italy, 1965; Dongmann et al., Radiation and Environmental Biophysics 11, 41–52, 1974; Farquhar & Lloyd, pp. 47–70 in Stable Isotopes and Plant Carbon–Water Relations, Academic Press, San Diego, CA, USA, 1993) agreed closely with observed leaf water enrichment in the morning and early afternoon, but poorly during the night. A modified model taking into account non‐steady‐state effects (Farquhar and Cernusak, unpublished) gave better predictions of observed leaf water enrichments over a full diurnal cycle. The δ15N, δ13C, and δ18O of dry matter varied appreciably among components. Dry matter δ15N was highest in xylem sap and lowest in leaves, whereas dry matter δ13C was lowest in leaves and highest in phloem sap and seeds, and dry matter δ18O was lowest in leaves and highest in pod walls. Phloem sap, leaf, and fruit dry matter δ18O varied diurnally, as did phloem sap dry matter δ13C. These results demonstrate the importance of considering the non‐steady‐state when modelling biological fractionation of stable isotopes in the natural environment.  相似文献   

9.
We describe a method for perfusing the xylem in the stele of excised onion roots with solutions of known composition under a pressure gradient. Tracer studies using [14C] polyethylene glycol 4000 and the fluorescent dye, Tinopal CBSX, indicated that perfusing solutions passed exclusively through the xylem vessels. The conductance of the xylem was small over the apical 100 mm of the root axis but increased markedly between 100 and 200 mm. Unbuffered perfusion solutions supplied in the range pH 3.7–7.8 emerged after passage through the xylem adjusted to pH 5.2–6.0, indicating the presence of mechanisms for absorbing or releasing protons. This adjustment continued over many hours with net proton fluxes apparently determined by the disparity between the pH of the perfusion solution and the usual xylem sap pH of about 5.5. Mild acidification of the xylem sap by buffered perfusion solutions increased the release of 86Rb (K+) and 35SO4 2- from the stelar tissue into the xylem stream. The ion-transporting properties of onion roots seemed little changed by excision from the bulbs, or by removal of the apical zones of the root axis. The pH of sap produced by root pressure resembles that found in the outflow solutions of perfused root segments.  相似文献   

10.
Distribution of Nitrogen during Growth of Sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
The accumulation, distribution and redistribution of dry matterand nitrogen is described for Helianthus annuus L. cv. Hysun21 grown on 6 mM urea in glasshouse culture. Seed dry matterand nitrogen were transferred to seedlings with net efficienciesof 40 and 86 per cent respectively. At flowering, the stem hadmost of the plant's dry matter and the leaves most of its nitrogen.About 35 per cent of the plant's nitrogen accumulated afterthree-row anthesis. The amount of protein in vegetative parts,especially leaves, declined after flowering. Concentrationsof free amino compounds also decreased during growth. Matureseeds had 38 per cent of the total plant dry weight and 68 percent of the total nitrogen. Seeds acquired 33 per cent of theirdry matter and nitrogen from redistribution from above-groundplant parts. The stem was most important for storage of carbohydrate,leaves the most important for nitrogen. Over 50 per cent ofthe nitrogen in the stem and leaves was redistributed. Plantsthat received 6 mM nitrate accumulated more dry matter thanurea-grown plants. Seeds from nitrate-grown plants were heavier(58 mg) than those of urea-grown plants (46 mg), and their percentageoil was greater (50 and 41 respectively). The amount of nitrogenper seed was the same. Little or no urea was detected in xylem sap of plants suppliedwith 5 mM urea, but it was detected in sap of plants which received25 mM. Concentrations of urea and amino compounds in the sapdecreased up the stem. Plants supplied with nitrate had mostof the nitrogen in xylem sap as NO2, suggesting littlenitrate reduction in roots. Plants grown on 6 mM nitrate andchanged to high levels of urea-nitrogen for 14 days still hadhigh levels of nitrate; little nitrate remained in plants receivinglow levels of urea. When urea is applied in irrigation waterto field-grown sunflower, the nitrogen is subsequently takenup as nitrate due to rapid nitrogen transformations in the soil. Helianthus annuus L., sunflower, urea, nitrate, nitrogen transport, xylem sap, nitrogen accumulation nitrogen distribution  相似文献   

11.
Solute composition of root xylem sap of common native hostsof quandong (Santalum acuminatum) was compared with that ofcorresponding xylem sap and ethanolic extracts of endophytictissues of haustoria of the hemiparasite. Each host transporteda characteristic set of organic nitrogenous solutes, but littleor no nitrate, and the data indicated only limited direct flowof amino compounds between xylem streams of hosts and parasite.Proline predominated in the haustorium and xylem ofSantalum,but was at negligible levels in the xylem of most hosts. Sucrose,fructose, glucose, malate and citrate were at high levels inall saps, and fructose especially prominent inSantalum. Chloride,sulphate and phosphate were the principal inorganic anions ofthe xylem. Based on C:N ratios of xylem and dry matter ofSantalumandassuming a 70% or more dependence on the host for N, it wasestimated thatSantalumwould gain approximately one third ofits C requirement for dry matter production heterotrophicallyfrom the xylem of its hosts. Infiltration of xylem of haustoria-bearingroot segments of a major host (Acacia rostellifera) with a rangeof15N labelled substrates resulted in 40–80% of the15Nof endophytes of the attached haustoria being received as proline.Nitrate reductase activity was induced in haustoria followinghost xylem feeding of nitrate. The study concludes that haustoriaofSantalumact as a major site of synthesis and export of prolineand might therefore play an important role in osmotic adjustmentof the parasite and its related acquisition of water from hosts. Root hemiparasite; Santalum acuminatum; 15N labelled substrates; xylem transport; proline; osmoregulation  相似文献   

12.
Poul  Hansen 《Physiologia plantarum》1967,20(2):382-391
The presence of fruits affects the translocation and distribution of photosynthates from apple leaves to other organs of the tree. An attempt has been made to study the relationship in greater detail by following the distribution of 14C introduced in the form of 14CO2 on shoots with and without fruits, respectively. Determinations of the 14C-content were made on different parts of the shoot sampled at varying intervals after the introduction of the tracer. The l4C-labelling and the content of sorbitol and sugar in the leaves were determined by means of paper chromatography. A total of nearly 90 per cent of the 14C taken up by the leaves can be transferred to a fruit close by, the majority during the first 4 to 5 days following the addition of the 14C. The content of 14C in the leaves is reduced more rapidly in shoots with fruits than in those without. Young leaves retain more of the added 14C than do fully developed ones. The greatest changes with time are found in the methanol-soluble 14C-compounds. Immediately following application, the leaves contain 58 to 80 per cent of the 14C added in sorbitol, 7 to 9 per cent in sucrose, and 1 to 4 per cent in the form of glucose. Within 5 days after the introduction of 14C the amount of 14C-sorbitol is reduced very considerably, while in certain cases the amount of 14C-glucose increases. The 14C-sorbitol content was higher in leaves from shoots without fruits than in those from fruit-bearing shoots, and this applied also to the total contents of sorbitol and of glucose.  相似文献   

13.
The vasculature of the dorsal suture of cowpea (Vigna unguiculata [L.] Walp) fruits bled a sugar-rich exudate when punctured with a fine needle previously cooled in liquid N2. Bleeding continued for many days at rates equivalent to 10% of the estimated current sugar intake of the fruit. A phloem origin for the exudate was suggested from its high levels (0.4-0.8 millimoles per milliliter) of sugar (98% of this as sucrose) and its high K+ content and high ratio of Mg2+ to Ca2+. Fruit cryopuncture sap became labeled with 14C following feeding of [14C]urea to leaves or adjacent walls of the fruit, of 14CO2 to the pod gas space, and of [14C] asparagine or [14C]allantoin to leaflets or cut shoots through the xylem. Rates of translocation of 14C-assimilates from a fed leaf to the puncture site on a subtended fruit were 21 to 38 centimeters per hour. Analysis of 14C distribution in phloem sap suggested that [14C]allantoin was metabolized to a greater extent in its passage to the fruit than was [14C] asparagine. Amino acid:ureide:nitrate ratios (nitrogen weight basis) of NO3-fed, non-nodulated plants were 20:2:78 in root bleeding xylem sap versus 90:10:0.1 for fruit phloem sap, suggesting that the shoot utilized NO3-nitrogen to synthesize amino acids prior to phloem transfer of nitrogen to the fruit. Feeding of 15NO3 to roots substantiated this conclusion. The amino acid:ureide ratio (nitrogen weight basis) of root xylem sap of symbiotic plants was 23:77 versus 89:11 for corresponding fruit phloem sap indicating intense metabolic transfer of ureide-nitrogen to amino acids by vegetative parts of the plant.  相似文献   

14.
Phloem loading in peach: Symplastic or apoplastic?   总被引:2,自引:0,他引:2  
Sorbitol and sucrose are the two main soluble carbohydrates in mature peach leaves. Both are translocated in the phloem, in peach as in other rosaceous trees. The respective role of these two soluble carbohydrates in the leaf carbon budget, and their phloem loading pathway, remain poorly documented. Though many studies have been carried out on the compartmentation and export of sucrose in sucrose-transporting species, far less is known about sorbitol in species transporting both sucrose and sorbitol. Sorbitol and sucrose concentrations were measured in several tissues and in sap, in 2-month-old peach (Prunus persica L. Batsch) seedlings, i.e. leaf blade, leaf main vein, petiole, xylem sap collected using a pressure bomb, and phloem sap collected by aphid stylets. The sorbitol to sucrose molar ratio depended on the tissue or sap, the highest value (about 7) found in the leaf main vein. Sorbitol concentration in the phloem sap was about 560 mM, whereas that of sucrose was about 140 mM. The lowest sorbitol and sucrose concentrations were observed in xylem sap collected from the shoot. The volume of the leaf apoplast, estimated by infiltration with 3H-inulin, represented about 17% of the leaf blade water content. This volume was used to calculate a global intracellular concentration for each carbohydrate in the leaf blade. Following these simplifying assumptions, the calculated concentration gradient between the leaf's intracellular compartment and phloem sap is nil for sorbitol and could thus allow for the symplastic loading of the phloem of this alditol. However, infiltration of 14C-labelled source leaves with 2 mMp-chloromercuribenzenesulfonic acid (PC-MBS), a potent inhibitor of the sucrose carrier responsible for phloem loading in sucrose-transporting plants, had a significant effect on the exudation of both labelled sucrose and sorbitol from the phloem. Therefore, in peach, which is a putative symplastic loader according to minor vein anatomy and sorbitol concentration gradients, apoplastic loading may predominate.  相似文献   

15.
Hydroponic-grown seedlings of aspen (Populus tremuloides Michx.) were used to investigate how low root temperatures (5°C) affect stomatal conductance and water relations. An isohydric manner of the stomatal behaviour was found with the seedlings when their roots were subjected to the low temperature. Stomatal conductance rapidly and dramatically reduced in response to the low root temperature, while the xylem water potential did not significantly alter. Under the low root temperature, pH value of the xylem sap increased from 6.15 to 6.72 within the initial 4 h, while abscisic acid (ABA) concentration increased by the eighth hour of treatment. K+ concentration of the xylem sap significantly decreased within the 8th h and then reversed by the 24th h. The ion change was accompanied by a decrease and then an increase in the electrical conductivity, and an increase and then a decrease in the osmotic potential. The tempo of physiological responses to the low root temperature suggests that the rapid pH change of the xylem sap was the initial factor which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. Xylem sap from the seedlings subjected low root temperature affected stomatal aperture on leaf discs when they were floated on the sap solution. The stomatal aperture correlated (P = 0.006) with the changed pattern of [K+] in the sap while the range of pH or ABA found in the xylem sap did not influence stomatal aperture of leaf discs in solution. The effect of xylem sap on stomatal aperture on leaf discs was different from on stomatal conductance in the intact seedlings. Comparison was made with previous study with the soil-grown seedlings.  相似文献   

16.
A comparison was made of the nitrogenous constituents in thesap extracted under vacuum from apple shoots of different ages,as regards changes both with season and in response to fertilizernitrate applied in summer or autumn. Before blossoming the N concentration of the sap changed markedlywith age of shoot, with the values doubling in the samples fromthe proximal half of the 3-year-old wood to the distal 2-year-oldsection, followed by a significant decrease in the 1-year-oldshoot. After blossoming the gradients in sap concentration wereless pronounced but usually the lowest values were found inthe youngest part of the shoot. Fourteen days after a soil application of nitrate in July therewas a marked increase in the concentration of asparagine inthe sap, but only in the 3-year-old section of the shoot. Sevendays later the xylem sap from all parts of the shoot containedincreased levels of asparagine, aspartic acid, and glutamine. No changes in the xylem sap of shoots in response to fertilizerapplied in October were observed until the following April.Then increased amounts of asparagine and glutamine were foundin all sections, with the greatest increase being seen in theyoungest part. It is suggested that this was due to acceleratedmobilization of N reserves into the xylem sap in response togrowth regulators originating in the roots rather than to movementof recently absorbed nutrients.  相似文献   

17.
Castor bean seedlings grown in different media (soil, quartz sand, or liquid culture) under natural or axenic conditions take up14C labelled proline when offered to the rooting medium at concentrations similar to those occuring in the soil. Most of the absorbed proline was transferred through the root into the xylem without metabolic conversion, though some conversion to glutamine and alamine occurred.It is concluded that roots successfully compete with microorganisms for free amino acids in the soil for the following reasons: (a) The initial rate of appearance of radioactivity in the xylem sap was the same in plants grown in natural or in axenic soil, and (b) the specific activity of proline in the xylem sap was approximately the same in plants grown in natural conditions and in axenic soil (even somewhat higher under natural condition).The role of soil microorganisms became evident however in long-term experiments (e.g. 5h), because the soil solution was much more rapidly depleted of labelled amino acids in natural soil than in axenic soil. Therefore after 20 hours roots grown in sterilized soil or quartz sand always contained more14C label than those grown in natural soil.It is suggested that viable roots use free amino acids from the soil and that the main flux of carbon to the rhizosphere might be in the form of organic acids.  相似文献   

18.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

19.
Rapid direct conversion of exogenously supplied [14C]aspartate to [14C] asparagine and to tricarboxylic cycle acids was observed in alfalfa (Medicago sativa L.) nodules. Aspartate aminotransferase activity readily converted carbon from exogenously applied [14C]aspartate into the tricarboxylic acid cycle with subsequent conversion to the organic acids malate, succinate, and fumarate. Aminooxyacetate, an inhibitor of aminotransferase activity, reduced the flow of carbon from [14C]aspartate into tricarboxylic cycle acids and decreased 14CO2 evolution by 99%. Concurrently, maximum conversion of aspartate to asparagine was observed in aminooxyacetate treated nodules (30 nanomoles asparagine per gram fresh weight per hour. Metabolism of [14C]aspartate and distribution of nodulefixed 14CO2 suggest that two pools of aspartate occur in alfalfa nodules: (a) one involved in asparagine biosynthesis, and (b) another supplying a malate/aspartate shuttle. Conversion of [14C]aspartate to [14C]asparagine was not inhibited by methionine sulfoximine, a glutamine synthetase inhibitor, or azaserine, a glutmate synthetase, inhibitor. The data did not indicate that asparagine biosynthesis in alfalfa nodules has an absolute requirement for glutamine. Radioactivity in the xylem sap, derived from nodule 14CO2 fixation, was markedly decreased by treating nodulated roots with aminooxyacetate, methionine sulfoximine, and azaserine. Inhibitors decreased the [14C]aspartate and [14]asparagine content of xylem sap by greater than 80% and reduced the total amino nitrogen content of xylem sap (including nonradiolabeled amino acids) by 50 to 80%. Asparagine biosynthesis in alfalfa nodules and transport in xylem sap are dependent upon continued aminotransferase activity and an uninterrupted assimilation of ammonia via the glutamine synthetase/glutamate synthase pathway. Continued assimilation of ammonia apparently appears crucial to continued root nodule CO2 fixation in alfalfa.  相似文献   

20.
Emmert FH 《Plant physiology》1966,41(2):244-247
A technique was developed for estimating penetration of P32 across roots of intact plants (Phaseolus vulgaris) by measuring the level of isotope in the xylem stream. Penetration was defined as movement from the root surface to the xylem sap. The xylem sap measurement for P32 was made in the stem as the material ascended the plant in the transpiration stream. Stems were held near 0° to arrest metabolic concentration of isotope adjacent to the xylem column. A 3 layer environment control system was constructed to allow stem chilling in a manner that would not interfere with the environments of the roots or foliage. Despite these precautions, some extra-xylary build-up of 32P occurred in the chilled stem. The mathematical function of the extra-xylary fraction was derived, and the difference between this value and total P32 in the stem represented xylem sap isotope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号