首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The establishment of lacZ marked strain of P-solubilizing bacterium Pseudomonas in the rhizosphere of mungbean (Vigna radiata) under pothouse conditions was studied. The lacZ marker was transferred to Pseudomonas P-36 on LB medium using donor strain of E. coli. The lacZ marked strain formed blue colonies on selective media and could be identified from soil on the basis of this character. The lacZ marked strain was able to survive in rhizosphere of mungbean under pothouse conditions and maintained a population of about 104 g?1 of rhizosphere soils up to 60 days study period. Positive effect of inoculation with P-solubilizing bacterium on dry matter yield, P and N-uptake was observed using rock phosphate and single super phosphate as P sources with and without farmyard amendment.  相似文献   

2.
A. E. Asmah 《Mycorrhiza》1995,5(3):223-228
The effects of two phosphorus (P) sources (triple superphosphate and Ghafsa phosphate rock), applied at rates equivalent to 44kg ha-1 and 22 kg ha-1, on vesicular-arbuscular mycorrhizal (VAM) fungal infection in roots, dry matter yield and nutrient content of maize grown in an oxisol and an alfisol, were investigated in a growth cabinet. The application of 44 kg P ha -1 resulted in root infection by VAM fungi not was significantly different (P<-0.01) from when no P was applied. Root infection was significantly greater when P was applied as triple superphosphate at the rate of 22 kg ha-1 the higher rate. Phosphate rock treatments at both rates of application resulted in significantly greater root infection than in controls with no P or when triple superphosphate was applied at 44 kg ha-1. Plant P uptake increased in all soils with the different P treatments compared with the control. No direct effects of the treatments on the aluminium and zinc contents of maize plants were observed. In the gleyic alfisol, reduced Mn uptake as a result of increased infection of plants with the superphosphate treatments was observed. Higher Mn was also found in plants with the higher rate of superphosphate treatment than with the phosphate rock treatments in the haplustox, although infection rates in plants with the latter treatments were higher. With the exception of plants with the phosphate rock treatment applied at 22kg ha-1, dry matter yields of plants with all P sources were significantly greater than the controls.  相似文献   

3.
Phosphorus, an essential element for life, is continuously depleting from soils and thus demands sustainable management particularly in agriculture and forestry. Inorganic P constitutes the major proportion as tricalcium phosphate in soils of lower Himalayan region of Pakistan. We sampled these soils and screened for P-solubilizing microbes. A range of culturable microbial community (bacteria and fungi) was isolated and molecularly characterized which make the P available from mineral phosphates. There was an increase in abundance of phosphate solubilizing bacteria (PSB) at a 6-inch depth of the pine rhizosphere compared to the surface soil samples. Moreover, the isolates from lower Himalaya have higher abundance and better efficiency to solubilize the inorganic P than the ones from non-Himalaya. Most likely the P-solubilization done by our P-solubilizing microbes is via acidification as we observed the decrease in pH of the medium of microbial growth. Furthermore, the majority of isolated PSB belong to gammaproteobacterial class of Gram negative bacteria. Most interestingly, 13% of our isolated PSB were psychrotolerant (physiologically active at cold environment, i.e., 4°C) and able to solubilize inorganic P as efficiently as at ambient temperature. This study is unique in reporting the P-solubilizing microbes, particularly the psychrotolerant bacterial strains, of Lower Himalaya. Therefore the isolated bacterial and fungal strains have potential and may serve as biofertilizers in the region to increase the P availability in soils.  相似文献   

4.
Phosphorus (P) is despite its omnipresence in soils often unavailable for plants. Rhizobacteria able to solubilize P are therefore crucial to avoid P deficiency. Selection for phosphate-solubilizing bacteria (PSB) is frequently done in vitro; however, rhizosphere competence is herein overlooked. Therefore, we developed an in planta enrichment concept enabling simultaneous microbial selection for P-solubilization and rhizosphere competence. We used an ecologically relevant combination of iron- and aluminium phosphate to select for PSB in maize (Zea mays L.). In each consecutive enrichment, plant roots were inoculated with rhizobacterial suspensions from plants that had grown in substrate with insoluble P. To assess the plants’ P statuses, non-destructive multispectral imaging was used for quantifying anthocyanins, a proxy for maize’s P status. After the third consecutive enrichment, plants supplied with insoluble P and inoculated with rhizobacterial suspensions showed a P status similar to plants supplied with soluble P. A parallel metabarcoding approach uncovered that the improved P status in the third enrichment coincided with a shift in the rhizobiome towards bacteria with plant growth-promoting and P-solubilizing capacities. Finally, further consecutive enrichment led to a functional relapse hallmarked by plants with a low P status and a second shift in the rhizobiome at the level of Azospirillaceae and Rhizobiaceae.  相似文献   

5.
Previous studies investigated the direct application of phosphate rock and its partially acidulated to enhance its solubility compared to soluble fertilizers. However, the interaction between the effect of particles diameter and partial acidulation of phosphate rock on phosphorus (P) availability and its effect on dry matter yield and P uptake is still elusive. This study was conducted to assess the effect of partially acidulated Egyptian phosphate rocks with different particle size diameters on P availability and its effect on dry matter yield and P uptake of maize (Zea mays L.). A pot experiment was conducted on maize plants grown on light clay soil for 42 days. Acidulation was done by mixing phosphate rock with single superphosphate or triple superphosphate at a total rate of 200 mg P kg?1 with five acidulation mix ratios (100:0, 75:25, 50:50, 25:75, and 0:100). Different particle size diameters of phosphate rocks (500, 212, 75, and <45 µm included nano-particles ranged from 69.3 to 25.7 nm) were used. We found that dry matter yield and P uptake increased significantly due to the use of partially acidulated phosphate rocks especially when triple superphosphate was used for acidulation and the mixing ratio of 50:50 was the best. We also found that maize yield and P uptake increased significantly with decreasing particle size. It is recommended to use finely grounded partially acidulated phosphate rocks with particles diameter less than 45 µm at acidulation ratio 50% and no need to increase acidulation ratio above that as a slow-release phosphate fertilizer.  相似文献   

6.
The abandoned “Monte-Fresco” rock phosphate mine in Táchira, Venezuela, was sampled to study the biodiversity of phosphate-solubilizing microorganisms (PSM). Rhizosphere and bulk soils were sampled from colonizer plant species growing at a mined site where pH and soluble P were higher than the values found at a near by unmined and shrubby soil. Counting and isolating of PSM choosing strains showing high solubilization halos in a solid minimal medium with hydroxyapatite as phosphate source were evaluated using ammonia or nitrate as nitrogen sources and dextrose, sucrose, and mannitol as carbohydrate sources. A larger number of PSM were found in the rhizospheric than in the bulk soil. Six fungal strains belonging to the genus Penicillium and with high hydroxyapatite dissolution capacities were isolated from bulk soil of colonizer plants. Five of these strains had similar phenotypes to Penicillium rugulosum IR-94MF1 but they solubilized hydroxyapatite at different degrees with both nitrogen sources. From 15 strains of Gram-negative bacteria isolated from the rhizosphere of colonizer plants, 5 were identified as diazotrophic free-living encapsulated Azotobacter species able to use ammonium and/or nitrate to dissolve hydroxyapatite with glucose, sucrose and/or mannitol. Different nitrogen and carbohydrate sources are parameters to be considered to further characterize the diversity of PSM.  相似文献   

7.
Three fungal isolates (phosphate-dissolvers), Aspergillus niger, A. fumigatus and Penicillium pinophilum were isolated from the rhizosphere of different plants grown in Ismailia and South Sinai Governorates. They effectively solubilized rock phosphate or tricalcium phosphate in Pikovskaya's liquid medium. In pot and column experiments, they significantly reduced pH and increased available phosphorus in the soil treated with either rock phosphate or superphosphate. The yield components of wheat and faba bean plants increased as a result of soil inoculation with the isolated fungi. Penicillium pinophilum was the most efficient isolate. It increased the yield of wheat grains by 28.9 and 32.8% in the soil treated with rock phosphate and superphosphate, respectively. Similarly, it increased the production of faba bean seeds by 14.7 and 29.4% with the same treatments. The uptake of phosphorus by both crops significantly increased due to inoculation of the soil with the tested fungi.  相似文献   

8.
Utilization of phosphate from different sources by six plant species   总被引:6,自引:0,他引:6  
Summary Six plant species, wheat, paspalum grass (Paspalum plicatulum), maize, molasses grass (Melinis minutiflora), soybean and buckwheat (Fagopyrum esculentum) were compared for their abilities to utilize phosphate from superphosphate, a calcined aluminum phosphate and four rock phosphates.Buckwheat showed an exceptional behaviour in that it could utilize all phosphates. For the other plants, only the calcined aluminum phosphate and one rock phosphate (hyperphosphate) had significant fertilizing values. Their efficiencies, relative to superphosphate, were 0.45 and 0.11 for wheat, 0.73 and 0.43 for paspalum grass, 0.50 and 0.37 for maize, 0.46 and 0.42 for molasses grass, 0.28 and 0.38 for soybean, and 0.72 and 1.08 for buckwheat, respectively.For three P sources, superphosphate, calcined aluminum phosphate and hyperphosphate, a relationship between soil acidity and P uptake was found. Soil pH in its turn was negatively related to the ratio of total equivalents of cations and those of anions absorbed. Consequenly, P uptake was positively related to the ratio of total equivalents of cations to those of anions absorbed. The same effect of plant species on soil pH could also explain the difference in uptake of P from sparingly soluble phosphates. The relative efficiencies of calcined aluminum phosphate and hyperphosphate for the various plant species were closely related to the ratio of total cations and total anions absorbed by these plants.on leave at the Agricultural University during 1977.  相似文献   

9.
SUMMARY: The bacteriology of the root region of oat plants grown under controlled conditions has been studied by means of improved techniques for separate estimation of the microfloras of the rhizosphere soil and of the root surface. The plate count of bacteria in the root region increased during the growing period of the plants; superphosphate produced a greater increase, which was probably due to increased plant growth, as no such effect was observed in uncropped soil.
The numbers of acid producing and dicalcium phosphate dissolving bacteria were increased in the root region, but the latter were not preferentially stimulated. Dressings of superphosphate and dicalcium phosphate also did not preferentially stimulate either group. No evidence was obtained, by the plate method used, of the presence of organisms capable of dissolving variscite, strengite, or gafsa rock phosphate, although the plants showed appreciable response to gafsa rock phosphate.  相似文献   

10.
N. Ae  R.F. Shen 《Plant and Soil》2002,245(1):95-103
Groundnuts showed a superior ability to take up phosphorus (P) from two soils of extremely low fertility, where sorghum and soybean died of P deficiency. This ability could not be attributed to differences in root development, to P uptake parameters such as Cmin, or to the excretion of root exudates capable of solubilizing iron- (Fe-P) and aluminum-bound P (Al-P), the sparingly soluble P forms in soils. A new P solubilizing mechanism (called `contact reaction') which occurs at the interface between root surface and soil particles, is therefore proposed. Isolated cell walls from groundnut roots solubilized more P from P-fixing minerals than those from sorghum and soybean roots. The P-solubilizing activity of groundnut root cell-walls might therefore be related to the superior growth of this crop under P-deficient conditions. The P-solubilizing active sites in groundnut root cell walls were located at the root surface and could act as chelating agent with Fe(III). This P-solubilizing active component in the cell walls could be extracted by NaOH, but not by HCl, and was identified as a small molecule through column chromatography with Sephadex LH-20. The P-solubilizing ability of pigeonpea root cell-walls was examined and found to be as high as that of groundnut. As pigeonpea plants excrete significant amount of root exudates with Fe-P solubilizing ability only after they flower, the P-solubilizing ability of root cell-walls may partially explain the high P efficiency of this species before it flowers.  相似文献   

11.
一株红壤溶磷菌的分离、鉴定及溶磷特性   总被引:9,自引:0,他引:9  
【目的】为了提高红壤磷素利用率,探讨溶磷菌溶磷机理。【方法】利用难溶性无机盐培养基从花生根际土壤样品中分离到一株溶磷菌C5-A,结合菌落形态特征、生理生化和16S rRNA序列确定该菌株的系统发育地位;通过菌株C5-A在NBRIP液体培养基培养过程中培养液pH变化确定其溶磷能力;利用液体发酵实验测定不同的碳源、氮源对菌株C5-A溶磷的影响;通过高效液相色谱检测C5-A在不同氮源培养液中有机酸的种类和浓度。【结果】菌株C5-A鉴定为洋葱伯克霍尔德氏菌(Burkholderia cepacia),遗传稳定性较好。在FePO4和AlPO4培养液中,菌株C5-A的溶磷量和pH变化呈显著负相关;菌株C5-A对磷酸三钙、磷酸铝、磷酸铁、磷矿粉均有较强的溶解能力,最高溶磷量分别为125.79、227.34、60.02和321.15 mg/L;菌株C5-A对不同浓度的两种磷矿粉有较强的溶解能力;分别以麦芽糖和草酸铵为碳源和氮源时溶磷量最高。高效液相色谱检测出10种有机酸,分别为草酸(葡萄糖酸)、乙酸、苹果酸、琥珀酸和5种未知有机酸,然而,乙酸而非草酸似乎是影响C5-A溶磷的重要有机酸。【结论】从红壤花生根际土壤中筛选到一株对难溶性无机盐具有较强溶解能力溶的菌株C5-A,有望为开发高效红壤微生物磷肥提供种质资源。  相似文献   

12.
Two phosphate solubilizing bacteria (PSB), M3 and SP1, were obtained from the rhizosphere of mungbean and sweet potato, respectively and identified as strains of Pseudomonas aeruginosa. Their rock phosphate (RP) solubilizing abilities were found to be due to secretion high amount of gluconic acid. In the presence of malate and succinate, individually and as mixture, the P solubilizing ability of both the strains was considerably reduced. This was correlated with a nearly 80% decrease in the activity of the glucose dehydrogenase (GDH) but not gluconate dehydrogenase (GAD) in both the isolates. Thus, GDH enzyme, catalyzing the periplasmic production of gluconic acid, is under reverse catabolite repression control by organic acids in P. aeruginosa M3 and SP1. This is of relevance in rhizospheric conditions and is a new explanation for the lack of field efficacy of such PSB.  相似文献   

13.
14.
Composts were produced from rice straw enriched with rock phosphate and inoculated with Aspergillus niger, Trichoderma viride and/or farmyard manure (FYM). The resulting composts were evaluated as organic phosphate fertilizers for cowpea plants in pot experiments. The results showed that the maximum amount of soluble phosphorous (1000 ppm) was produced in composts inoculated with A. niger+T. viride with or without FYM. Any of the produced composts was much better than superphosphate fertilizer in providing the growing cowpea plants with phosphorous. Fertilization of the cowpea plants with the compost inoculated with FYM+A. niger+T. viride resulted in maximum amount of phosphorous uptake (295 ppm). The highest phosphate dissolving fungi numbers in rhizosphere soils of cowpea plants were obtained after fertilization with composts which received A. niger and T. viride treatments, while the highest phosphate dissolving bacterial numbers were found after fertilization with composts which received FYM treatments.  相似文献   

15.
The purpose of this study was to investigate the diversity of cultivable phosphate solubilising (PSB) and total bacteria originated from 384 rhizospheric acidic soils samples of tea plants grown at 32 locations. Over 900 rhizoplane bacteria were randomly selected from agar-solidified trypticase soy broth, and identified using fatty acid methyl ester (FAME) profiles. Based on FAME profiles, 53 bacterial genera were identified with a similarity index >0.3, but 60.3% of the identified isolates belonged to five genera: Bacillus (34.6%), Pseudomonas (8.9%), Stenotrophomonas (6.1%), Paenibacillus (5.9%) and Arthrobacter (4.8%). The bacilli group comprised many different species, with the most abundant being B. cereus, B. megaterium and B. sphaericus. The main identified Pseudomonads included P. fluorescens, P. putida, and P. alcaligenes. About 30.4% of the bacterial isolates could not be classified to genus since their similarity indices were <0.3 indicating no close matches. Most of the total and P-solubilizing bacteria isolated were Gram positive (61.3 and 52.3%), and Gram negative constituted only 38.7 and 47.7%. Out of the 214 PSB from a pool of 506 bacterial isolates recovered on the selective media from the rhizosphere of tea, 74 of them were characterized by carbon sources using BIOLOGM GN2 and GP2 plates. Bacillus, Pseudomonas, Paenibacillus and Stenotrophomonas genera were the most prominent P-solubilizing groups in the rhizosphere and soil populations analyzed. B. cereus, P. fluorescens, S. maltophilia, B. megaterium, P. putida, B. sphaericus and Paenibacillus polymyxa were the most frequent P-solubilizing species in the acidic tea rhizosohere soils. Selected Gram-positive PSB appeared to favour carbohydrates, and Gram-negative bacteria appeared to favour carboxylic acids, amino acids and carbohydrates as carbon sources. Selected phosphate solubilizing acid tolerant strains showed high variability in utilizing various carbon sources.  相似文献   

16.
4株溶磷细菌和真菌溶解磷矿粉的特性   总被引:27,自引:1,他引:27  
溶磷微生物广泛地分布在土壤,根际等生态环境中,了解这些微生物溶解难溶性磷酸盐如磷矿粉的特性,对于开发利用这些微生物,提高磷素利用效率具有重要作用,研究发现;真菌比细菌溶解磷矿粉的能力要强得多,培养基中的铁,镁,锰,钠等成分可以提高真菌的溶磷量,但降低了细菌的溶磷量,培养基中磷矿粉用量越高,溶磷量越低;碳源物质浓度高于3%将显地降低溶磷量,微生物能够破坏磷矿粉的结构。使其中的磷在以后的培养过程中更加容易释放出来,可见利用微生物活化磷矿粉中的磷,具有良好前景。  相似文献   

17.
In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole–3–acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   


18.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:56,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

19.
The effect of inoculation of vermicompost with nitrogen-fixing Azotobacter chroococcum strains, Azospirillum lipoferum and the phosphate solubilizing Pseudomonas striata on N and P contents of the vermicompost was assessed. Inoculation of N2 fixing bacteria into vermicompost increased contents of N and P. Enriching vermicompost with rock phosphate improved significantly the available P when inoculated with P. striata. During the incubation period, the inoculated bacterial strains proliferated rapidly, fixed N and solubilized added and native phosphate.  相似文献   

20.
Five bacterial strains with phosphate-solubilizing ability and other plant growth promoting traits increased the plant biomass (20-40%) by paper towel method. Glasshouse and field experiments were conducted using two efficient strains Serratia marcescens EB 67 and Pseudomonas sp. CDB 35. Increase in plant biomass (dry weight) was 99% with EB 67 and 94% with CDB 35 under glasshouse conditions. Increase in plant biomass at 48 and 96 days after sowing was 66% and 50% with EB 67 and 51% and 18% with CDB 35 under field conditions. Seed treatment with EB 67 and CDB 35 increased the grain yield of field-grown maize by 85% and 64% compared to the uninoculated control. Population of EB 67 and CDB 35 were traced back from the rhizosphere of maize on buffered rock phosphate (RP) medium and both the strains survived up to 96 days after sowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号