首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigated whether or not a 50 kDa glycoprotein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. When cells were heated for 10 min at 45.5 degrees C, they became thermotolerant to a heat treatment at 45.5 degrees C administered 12 hr later. The thermotolerance ratio at 10(-3) isosurvival was 4.4. The cellular heat shock response leads to enhanced glycosylation of a 50 kDa protein. The glycosylation of proteins including a 50 kDa glycoprotein was inhibited by treatment with various concentrations of tunicamycin (0.2-2 micrograms/ml). The development of thermotolerance was not affected by treatment with tunicamycin after the initial heat treatment, although 2 micrograms/ml tunicamycin inhibited glycosylation by 95%. However, inhibiting protein synthesis with cycloheximide (10 micrograms/ml) after the initial heat treatment partially inhibited the development of thermotolerance. Nevertheless, there was no further reduction of thermotolerance development by treatment with a combination of 2 micrograms/ml tunicamycin and 10 micrograms/ml cycloheximide. These data suggest that development of thermotolerance, especially protein synthesis-independent thermotolerance, is not correlated with increased glycosylation of the 50 kDa protein.  相似文献   

3.
Many Golgi glycosyltransferases are type II membrane proteins which are cleaved to produce soluble forms that are released from cells. Cho and Cummings recently reported that a soluble form of alpha1, 3- galactosyltransferase was comparable to its membrane bound counterpart in its ability to galactosylate newly synthesized glycoproteins (Cho,S.K. and Cummings,R.D. (1997) J. Biol. Chem., 272, 13622-13628). To test the generality of their findings, we compared the activities of the full length and soluble forms of two such glycosyltransferases, ss1,4 N-Acetylgalactosaminyltransferase (GM2/GD2/ GA2 synthase; GalNAcT) and beta galactoside alpha2,6 sialyltransferase (alpha2,6-ST; ST6Gal I), for production of their glycoconjugate products in vivo . Unlike the full length form of GalNAcT which produced ganglioside GM2 in transfected cells, soluble GalNAcT did not produce detectable GM2 in vivo even though it possessed in vitro GalNAcT activity comparable to that of full length GalNAcT. When compared with cells expressing full length alpha2,6-ST, cells expressing a soluble form of alpha2,6-ST contained 3-fold higher alpha2,6-ST mRNA levels and secreted 7-fold greater alpha2,6-ST activity as measured in vitro , but in striking contrast contained 2- to 4-fold less of the alpha2,6-linked sialic acid moiety in cellular glycoproteins in vivo . In summary these results suggest that unlike alpha1,3-galactosyltransferase the soluble forms of these two glycosyltransferases are less efficient at glycosylation of membrane proteins and lipids in vivo than their membrane bound counterparts.   相似文献   

4.
Synthesis of a family of proteins called “heat shock” proteins is enhanced in cells in response to a wide variety of environmental stresses. This suggests that these proteins may have functions essential to cell survival under stressful conditions. A causative relationship between heat shock protein synthesis and development of thermotolerance would imply that agents known to induce heat shock protein synthesis, such as sodium arsenite, also induce thermotolerance. Conversely, agents known to induce thermotolerance, such as ethanol, would also enhance heat shock protein synthesis. To test this hypothesis, I have examined the effect of sodium arsenite or ethanol treatment on protein synthesis and cell survival in Chinese hamster ovary HA-1 cells. After either sodium arsenite or ethanol treatment, the synthesis of heat shock proteins was greatly enhanced over that of untreated cells. In parallel, cell survival was increased as much as 104-fold when cells exposed to either agent were challenged by a subsequent heat treatment. The synthesis of heat shock proteins correlated well with the development of thermotolerance. A qualitative analysis of individual proteins suggests that the synthesis of 70,000 and 87,000 molecular weight proteins most closely mirrored the development of thermotolerance. The results, therefore, strongly reinforce the hypothesis that a causal relationship exists between the enhanced synthesis of heat shock protein and cell survival under specific stresses.  相似文献   

5.
Induced thermotolerance to apoptosis in a human T lymphocyte cell line.   总被引:15,自引:0,他引:15  
A brief exposure to elevated temperatures elicits, in all organisms, a transient state of increased heat resistance known as thermotolerance. The mechanism for this thermotolerant state is unknown primarily because it is not clear how mild hyperthermia leads to cell death. The realization that cell death can occur through an active process of self destruction, known as apoptosis, led us to consider whether thermotolerance provides protection against this mode of cell death. Apoptosis is a common and essential form of cell death that occurs under both physiological and pathological conditions. This mode of cell death requires the active participation of the dying cell and in this way differs mechanistically from the alternative mode of cell death, necrosis. Here we show that mild hyperthermia induces apoptosis in a human leukemic T cell line. This is evidenced by chromatin condensation, nuclear fragmentation and the cleavage of DNA into oligonucleosome size units. DNA fragmentation is a biochemical hallmark of apoptosis and requires the activation of an endogenous endonuclease. The extent of DNA fragmentation was proportional to the severity of heat stress for cells heated at 43 degrees C from 30 to 90 minutes. A brief conditioning heat treatment induced a resistance to apoptosis. This was evident as a resistance to DNA fragmentation and a reduction in the number of apoptotic cells after a heat challenge. Resistance to DNA fragmentation developed during a recovery period at 37 degrees C and was correlated with enhanced heat shock protein (hsp) synthesis. This heat-induced resistance to apoptosis suggests that thermotolerant cells have gained the capacity to prevent the onset of this pathway of self-destruction. An examination of this process in heated cells should provide new insights into the molecular basis of cellular thermotolerance.  相似文献   

6.
In vivo stress preconditioning   总被引:3,自引:0,他引:3  
The heat shock or stress protein response is a highly conserved defense mechanism. Activation of the stress protein response by mild hyperthermia or by pharmacological agents allows cells to withstand a subsequent metabolic insult that would otherwise be lethal, a phenomenon referred as "thermotolerance" or "preconditioning." Heat shock response is characterized by increased expression of stress proteins that provide cellular protection, e.g., via increased chaperoning activity in all organisms, from bacteria to animals and humans. Indeed, there is experimental evidence that overexpression of specific heat shock proteins or heat shock factors produce protective effects similar to those observed after stress preconditioning. The purpose of this review is first to discuss the methods used to induce in vivo thermotolerance with mild hyperthermia or pharmacological agents. Then, as an example of the organ protection provided by in vivo stress preconditioning, the second part of this paper will examine how the induction of thermotolerance modulates the lung inflammatory response associated with acute lung injury, thus providing broad organ and tissue protection against oxidative stress associated this syndrome.  相似文献   

7.
In recent studies, induction of the heat shock response increased IL-6 production in gut mucosa in vivo and in cultured Caco-2 cells in vitro. The heat shock response is associated with increased survival of cells exposed to otherwise lethal hyperthermia, so called thermotolerance, but the role of IL-6 in the induction of thermotolerance is not known. We tested the hypothesis that treatment of cultured Caco-2 cells with IL-6 results in the development of thermotolerance. Cells were treated with human recombinant IL-6 for 1h followed by 3 h recovery in cytokine-free medium whereafter cells were exposed to heat stress (48 degrees C for 2 h). In untreated cells, the heat stress resulted in an approximately 80% cell death. In cells treated with IL-6, cell viability after heat stress was significantly improved and was doubled at an IL-6 concentration of 20 ng/ml. Treatment of the cells with other cytokines (IL-4, IL-10, IL-1beta, or TNFalpha) did not induce thermotolerance, suggesting that the effect of IL-6 may be specific for this cytokine. The induction of thermotolerance by IL-6 was blocked by an IL-6 receptor antibody, suggesting that the development of thermotolerance was receptor-mediated. Treatment of cells with IL-6 did not induce an heat shock response as suggested by unaltered heat shock protein 70 and 90 levels and unaffected heat shock factor DNA binding activity. In addition, the IL-6-induced thermotolerance was not inhibited by quercetin. The present study provides the first evidence of IL-6-induced thermotolerance and suggests that this effect of IL-6 is independent of the heat shock response.  相似文献   

8.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

9.
Mammalian cells exhibit increased sensitivity to hyperthermic temperatures of 38-43 degrees C after an acute high-temperature heat shock; this phenomenon is known as the stepdown heating (SDH) effect. We characterized the SDH effect on (1) the synthesis of major heat shock proteins, HSP110, 90, 72/70, 60 (35S-amino acids label), (2) on heat-induced protein glycosylation (3H-D-mannose label), and (3) on thermotolerance expression, using cell survival as an endpoint. Partitioning of label between soluble and insoluble cell fractions was separately examined. Synthesis of high molecular weight HSPs (HSP110, 90, and 72/70) was increased both by acute (10 min, 45 degrees C) and chronic (1-6 h, 41.5 degrees C) hyperthermia, primarily in the soluble cytosol fraction. SDH (10 min, 45 degrees C + 1 to 6 h, 41.5 degrees C) completely inhibited labeling of HSP110, partially inhibited HSP90 labeling, and had virtually no effect on HSP72/70 synthesis, when compared with chronic hyperthermia alone. At the cell survival level, SDH increased sevenfold the rate of cell killing at 41.5 degrees C, but reduced the expression of thermotolerance by only a factor of two. This suggests that SDH sensitization did not result from changes in HSP72/70 synthesis, nor solely from inhibition of thermotolerance. 35S-labeled HSP60 and HSP50 were found primarily in the cellular pellet fraction after both acute and chronic hyperthermia. SDH completely inhibited 35S-labeling of both HSP60 and HSP50. Labeling of GP50 with 3H-D-mannose was also completely inhibited by SDH. Moreover, SDH progressively reduced N-acetylgalactosaminyl-transferase activity. The data demonstrate that heat sensitization by SDH is accompanied by complex and selectively inhibitory patterns of HSP synthesis and protein glycosylation. Profound inhibition of HSP110, HSP60, and HSP50/GP50 labeling suggests that these may be associated with mechanisms of SDH sensitization.  相似文献   

10.
During the development of thermotolerance, Chinese hamster ovary cells not only synthesized classical heat shock proteins, but also incorporated [3H]D-glucose or mannose into a glycoprotein with a Mr of approximately 50 kD. The glycosylation of the 50 kD protein correlated with the expression of thermotolerance under conditions when tolerance was induced either by acute or chronic heat conditioning. A phosphoprotein with the same molecular weight as the 50 kD glycoprotein was dephosphorylated immediately after heat conditioning. Both phosphate and glucose label in the ion front were enhanced immediately after heating, and may represent elevated levels of sugar phosphates. However, the composition of the ion front material remains to be determined. The data are consistent with a hypothesis that attributes increased heat resistance of thermotolerant cells to the glycosylation of specific heat-sensitive cellular sites.  相似文献   

11.
Duncan RF 《The FEBS journal》2005,272(20):5244-5256
The induction of the heat shock response as well as its termination is autoregulated by heat shock protein activities. In this study we have investigated whether Hsp90 functional protein levels influence the characteristics and duration of the heat shock response. Treatment of cells with several benzoquinone ansamycin inhibitors of Hsp90 (geldanamycin, herbimycin A) activated a heat shock response in the absence of heat shock, as reported previously. Pretreatment of cells with the Hsp90 inhibitors significantly delayed the rate of restoration of normal protein synthesis following a brief heat shock. Concurrently, the rate of Hsp synthesis and accumulation was substantially increased and prolonged. The cessation of heat shock protein synthesis did not occur until the levels of Hsp70 were substantially elevated relative to its standard threshold for autoregulation. The elevated levels of HSPS 22-28 (the small HSPS) and Hsp70 are not able to promote thermotolerance when Hsp90 activity is repressed by ansamycins; rather a suppression of thermotolerance is observed. These results suggest that a multicomponent protein chaperone complex involving both Hsp90 and Hsp70 signals the cessation of heat shock protein synthesis, the restoration of normal translation, and likely the establishment of thermotolerance. Impaired function of either component is sufficient to alter the heat shock response.  相似文献   

12.
The resistance of stationary phase Salmonella typhimurium to heating at 55°C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48°C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any.
The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48°C to 37°C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

13.
Chinese hamster ovary (CHO) cells were exposed to a 43 degrees C, 15-min heat shock to study the relationship between protein synthesis and the development of thermotolerance. The 43 degrees C heat shock triggered the synthesis of three protein families having molecular weights of 110,000, 90,000, and 65,000 (HSP). These proteins were synthesized at 37 and 46 degrees C. This heat shock also induced the development of thermotolerance, which was measured by incubating the cells at 46 degrees C 4 h after the 43 degrees C heat treatment. CHO cells were also exposed to 20 micrograms/ml of cycloheximide for 30 min at 37 degrees C, 15 min at 43 degrees C, and 4 h at 37 degrees C. This treatment inhibited the enhanced synthesis of the Mr 110,000, 90,000, and 65,000 proteins. The cycloheximide was then washed out and the cells were incubated at 46 degrees C. HSP synthesis did not recover during the 46 degrees C incubation. This cycloheximide treatment also partially inhibited the development of thermotolerance. These results suggest that for CHO cells to express thermotolerance when exposed to the supralethal temperature of 46 degrees C protein synthesis is necessary.  相似文献   

14.
Heat shock protein synthesis and thermotolerance in Salmonella typhimurium   总被引:2,自引:0,他引:2  
The resistance of stationary phase Salmonella typhimurium to heating at 55 degrees C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48 degrees C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any. The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48 degrees C to 37 degrees C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

15.
Cell survival during a severe heat stress can be enhanced when heat shock proteins are induced prior to the severe heat treatment. Induction can be accomplished either by heat or chemical treatments. The increase in survival at these severe elevated temperatures after pretreatment has been referred to as thermotolerance, which we now refer to as survival thermotolerance. It has also been shown previously that mild heat treatment allows splicing in cells subjected to a severe heat treatment, now referred to as splicing thermotolerance. The experiments shown here demonstrate that even though chemical induction of the heat shock proteins leads to survival thermotolerance, this same treatment does not induce splicing thermotolerance. These are the first results that demonstrate at least two distinct aspects of thermotolerance.  相似文献   

16.
Exposure of cells to heat induces thermotolerance, a transient resistance to subsequent heat challenges. It has been shown that thermotolerance is correlated in time with the enhanced synthesis of heat shock proteins. In this study, the association of induced heat shock proteins with various cellular fractions was investigated and the heat-induced changes in skeletal protein composition in thermotolerant and control cells was compared. All three major heat shock proteins induced in Chinese hamster fibroblasts after a 46 degrees C, 4-min heat treatment (70, 87, and 110 kDa) were purified with the cytoplasmic fraction, whereas only the 70-kDa protein was also found in other cell fractions, including that containing the cellular skeleton. Immediately after a second heat treatment at 45 degrees C for 45 min, the 110-kDa protein from thermotolerant cells also purified extensively with the cellular skeletal fraction. In this regard, the 110-kDa protein behaved similarly to many other cellular proteins, since we observed an overall temperature-dependent increase in the total labeled protein content of the high-salt-resistant cellular skeletal fraction after heat shock. Pulse-chase studies demonstrated that this increased protein content gradually returned to normal levels after a 3-hr incubation at 37 degrees C. The alteration or recovery kinetics of the total labeled protein content of the cellular skeletal fraction after heat shock did not correlate with the dramatic increase in survival observed in thermotolerant cells. The relationship between heat shock proteins and thermotolerance, therefore, does not correlate directly with changes in the heat-induced cellular alterations leading to differences in protein fractionation.  相似文献   

17.
18.
Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed.  相似文献   

19.
Induced thermotolerance is a phenomenon whereby exposure to a mild heat shock can induce heat shock proteins (HSP) and other cellular changes to make cells more resistant to a subsequent, more severe heat shock. Given that the 2-cell bovine embryo is very sensitive to heat shock, but can also produce HSP70 in response to elevated temperature, experiments were conducted to test whether 2-cell embryos could be made to undergo induced thermotolerance. Another objective was to test the role of the heat-inducible form of heat shock protein 70 (HSP70i) in development and sensitivity of bovine embryos to heat shock. To test for induced thermotolerance, 2-cell bovine embryos were first exposed to a mild heat shock (40 degrees C for 1 hr, or 41 degrees C or 42 degrees C for 80 min), allowed to recover at 38.5 degrees C and 5% (v/v) CO2 for 2 hr, and then exposed to a severe heat shock (41 degrees C for 4.5, 6, or 12 hr). Regardless of the conditions, previous exposure to mild heat shock did not reduce the deleterious effect of heat shock on development of embryos to the blastocyst stage. The role of HSP70i in embryonic development was tested in two experiments by culturing embryos with a monoclonal antibody to the inducible form of HSP70. At both 38.5 degrees C and 41 degrees C, the proportion of 2-cell embryos that developed to blastocyst was reduced (P < 0.05) by addition of anti-HSP70i to the culture medium. In contrast, sensitivity to heat shock was not generally increased by addition of antibody. In conclusion, bovine 2-cell embryos appear incapable of induced thermotolerance. Lack of capacity for induced thermotolerance could explain in part the increased sensitivity of 2-cell embryos to heat shock as compared to embryos at later stages of development. Results also implicate a role for HSP70i in normal development of bovine embryos.  相似文献   

20.
We investigated a correlation between development of thermotolerance and expression, synthesis, or phosphorylation of HSP28 family in CHO plateau phase cells. After heating at 45.5 degrees C for 10 min, thermotolerance developed rapidly and reached its maximum 12-18 hr after heat shock. This acquired thermal resistance was maintained for 72 hr and then gradually decayed. In parallel, the levels of three 28 kDa heat shock proteins, HSP28a along with its two phosphorylated isoforms (HSP28b,c), increased and reached their maximum 24-48 hr after heat shock. The levels of these polypeptides, except HSP28c, remained elevated for 72 hr and then decreased. The level of HSP28 mRNA increased rapidly and reached its maximum 12 hr after heat shock. However, unlike thermotolerance and the levels of HSP28 family proteins, the level of HSP28 mRNA decreased rapidly within 72 hr. These results demonstrate a correlation between the amount of intracellular HSP28 family proteins and development and decay of thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号