首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The case of a newborn girl with Zellweger syndrome and a pericentric inversion of chromosome 7, 46,XX, inv(7)(p12q11.23), is reported. The diagnosis was confirmed by marked deficiency of peroxisomal beta-oxidation enzymes in hepatic cells from autopsy samples. This is the second case of Zellweger syndrome associated with a rearrangement of chromosome 7, the tentative gene assignment to 7q11 being further supported; the gene is probably confiend to 7q11.23.  相似文献   

2.
Here, we report and investigate the genomic alterations of two novel cases of Non-Hodgkin Lymphoma (NHL) in children with Williams-Beuren syndrome (WBS), a multisystem disorder caused by 7q11.23 hemizygous deletion. Additionally, we report the case of a child with NHL and a somatic 7q11.23 deletion. Although the WBS critical region has not yet been identified as a susceptibility locus in NHL, it harbors a number of genes involved in DNA repair. The high proportion of pediatric NHL reported in WBS is intriguing. Therefore, the role of haploinsufficiency of genes located at 7q11.23 in lymphomagenesis deserves to be investigated.  相似文献   

3.
The gene for 7B2, a protein found in the secretory granules of neural and endocrine cells (gene symbol SGNE1) was localized to the E3-F3 region of mouse chromosome 2 and to the q11-q15 region of human chromosome 15. This was determined by in situ hybridization, using a mouse 7B2 cDNA and an intronic fragment of the corresponding human gene as probes. The respective locations of SGNE1 in the two species correlate with the conservation of loci between these subregions of mouse chromosome 2 and human chromosome 15. Clinically, the human SGNE1 DNA fragment may serve as a molecular probe of this locus in both the Prader-Willi and the Angelman syndromes, which are often accompanied by submicroscopic chromosomal deletions in the 15q11-15q13 region.  相似文献   

4.
We report the chromosomal localization of the cellular oncogene SKI, the putative oncogene of the Sloan-Kettering viruses (SKVs), a group of transforming retroviruses that had been isolated from chicken embryo cells infected with the avian leukosis virus tdB77. Southern blot analysis of DNA from mouse X human somatic cell hybrids with the v-SKI probe established synteny with chromosome 1, but excluding the region 1pter----q21. In situ hybridization of the same probe both to human spermatocyte pachytene and lymphocyte metaphase chromosomes enabled precise localization of the gene to the region 1q22----q24, a region that frequently is involved in translocations and other rearrangements in diverse human tumor types. In situ hybridization studies of metaphase spreads from a small noncleaved cell lymphoma that exhibited a t(1;14)(q21;q32) translocation showed that SKI translocates to the der(14) chromosome. Cytogenetic analysis of 65 prospectively ascertained non-Hodgkin's lymphomas revealed that the SKI region undergoes nonrandom breakage leading to translocations. Further analysis of the chromosome breaks in this group of lymphomas suggested that those involving the SKI site probably are of importance in tumor progression.  相似文献   

5.
6.
The Williams-Beuren syndrome (WBS) locus on human chromosome 7q11.23 is flanked by complex chromosome-specific low-copy repeats that mediate recurrent genomic rearrangements of the region. Common genomic rearrangements arise through unequal meiotic recombination and result in complex but distinct behavioural and cognitive phenotypes. Deletion of 7q11.23 results in WBS, which is characterised by mild to moderate intellectual disability or learning difficulties, with relative cognitive strengths in verbal short-term memory and in language and extreme weakness in visuospatial construction, as well as anxiety, attention-deficit hyperactivity disorder and overfriendliness. By contrast, duplication results in severely delayed speech and expressive language, with relative strength in visuospatial construction. Although deletion and duplication of the WBS region have very different effects, both cause forms of language impairment and suggest that dosage-sensitive genes within the region are important for the proper development of human speech and language. The spectrum and frequency of genomic rearrangements at 7q11.23 presents an exceptional opportunity to identify gene(s) directly involved in human speech and language development.  相似文献   

7.
Mouse A9 cells containing human chromosome 7 tagged with pSV2neowere irradiated with X-rays and fused to A9 cells to isolateG418-resistant clones. From these clones, we selected radiationhybrids that contained 10–40 Mb of human DNA apparentlyat a single site of their genome by FISH analysis using humanrepetitive sequences as a probe. Then we made a panel of hybridsthat contained various fragments of the 7q31-q32 region andcover its entire region altogether by PCR with STS markers ofhuman chromosome 7. This panel is useful in chromosome transferexperiments since the dominant selective marker neo gene isattached to human DNA.  相似文献   

8.
Structural chromosome abnormalities in spermatozoa represent an important category of paternally transmittable genetic damage. A couple was referred to our centre because of repetitive abortions and the man was found to be a carrier of a reciprocal translocation t(3;11)(q27.3;q24.3). A tailored fluorescence in situ hybridisation (FISH) approach was developed to study the meiotic segregation patterns in spermatozoa from this translocation carrier. A combination of three DNA probes was used, a centromeric probe for chromosome 11, a cosmid probe for chromosome 11q and a YAC probe for chromosome 3q. The frequency of spermatozoa carrying an abnormal chromosome constitution was compared with baseline frequencies in control semen specimens and it was found that a significantly higher percentage of spermatozoa carried an abnormal constitution for the chromosomes involved in the translocation. A normal or balanced chromosome constitution was found in 44.3% of the analysed spermatozoa, while the remainder exhibited an abnormal chromosome constitution reflecting different modes of segregation (15.9% adjacent I segregation, 6.5% adjacent II segregation, 28.9% 3 : 1 segregation, 0.8% 4 : 0 segregation, 3.6% aberrant segregation). The frequency of aneuploidy for chromosomes X, Y, 13 and 21 was assessed using specific probes but there was no evidence of interchromosomal effects or variations in the sex ratio in spermatozoa from the translocation carrier. In conclusion, structural aberrations can be reliably assessed in interphase spermatozoa using unique DNA probe cocktails, and this method provides insight into the genetic constitution of germ cells and enables evaluation of potential risks for the offspring. Received: 19 September 1997 / Accepted: 27 October 1997  相似文献   

9.
Summary The von Willebrand factor pseudogene, previously mapped to chromosome 22, was sublocalized by in situ hybridization using as probe a von Willebrand factor cDNA fragment completely contained in the pseudogenic region. Chromosome spreads were from a patient carrying a unique balanced de novo translocation 46,X,t(X;22)(pter;q11.21). Silver grain analysis indicated that the human von Willebrand factor pseudogene is located on 22q11.22–q11.23, a region relevant for several somatic and constitutional chromosomal alterations.  相似文献   

10.
Duplication (dup7q11.23) and deletion (Williams syndrome) of chromosomal region 7q11.23 cause neurodevelopmental disorders with contrasting anxiety phenotypes. We found that 30% of 4- to 12-year-olds with dup7q11.23 but fewer than 5% of children with WS or in the general population met diagnostic criteria for a separation-anxiety disorder. To address the role of one commonly duplicated or deleted gene in separation anxiety, we compared mice that had varying numbers of Gtf2i copies. Relative to mouse pups with one or two Gtf2i copies, pups with additional Gtf2i copies showed significantly increased maternal separation-induced anxiety as measured by ultrasonic vocalizations. This study links the copy number of a single gene from 7q11.23 to separation anxiety in both mice and humans, highlighting the utility of mouse models in dissecting specific gene functions for genomic disorders that span many genes. This study also offers insight into molecular separation-anxiety pathways that might enable the development of targeted therapeutics.  相似文献   

11.
The human platelet-derived growth factor A-chain (PDGFA) locus was mapped by in situ hybridization. By use of human cDNA probes encoding the PDGF A-chain precursor polypeptide the gene was assigned to the proximal long arm of chromosome 7, band q11.23. Of 76 cells with silver grains on chromosome 7, 28% had label over this band. Our assignment represents a confirmation and further sublocalization of the PDGFA locus. The location correlates with specific chromosomal abnormalities associated with certain human developmental malformations and neoplasms.  相似文献   

12.
Williams-Beuren syndrome (WBS) is the chromosomal disorder arising from a hemizygous microdeletion at 7q11.23. The present study was focused on a comparative investigation of genomic integrity in WBS patients by use of cytogenetic methods and the alkaline comet assay. Lymphocytes of whole peripheral blood were cultured and metaphases were examined for frequency and spectrum of chromosome aberrations. A WBS-related microdeletion was detected by means of the FISH (fluorescence in situ hybridization) technique. The blood samples from patients who were carriers of this microdeletion, were tested in the comet assay. For this purpose, freshly collected lymphocytes were exposed to hydrogen peroxide (100μM, 1min, 4°C). The frequencies of endogenous and exogenous DNA damage, and the kinetics and efficiency of DNA repair were measured during three subsequent hours of incubation. Comparison of the two data sets in this group of patients demonstrated a slightly elevated average frequency of chromosome aberrations, significantly increased levels of endogenous and H(2)O(2)-induced DNA damage, and somewhat impaired DNA repair. The relationship between an abnormal DNA-damage response and the 7q11.23 hemizygous microdeletion was confirmed experimentally when comparing the comet assay data in FISH-positive and FISH-negative lymphocytes from WBS-suspected patients. Briefly, our results indicate the impact of chromosomal instability within this region on susceptibility towards DNA damage, which may contribute to pathogenesis of this disease. It was shown also that the comet assay, as well as an experimental design proposed here, seem to be useful tools for estimating genome integrity in WBS patients.  相似文献   

13.
Eleven sublines with increasing resistance to N-phosphonacetyl-L-aspartate (PALA) were isolated from the V79,B7 Chinese hamster cell line. Aspartate transcarbamylase activity and CAD gene copy number increased with increasing resistance of sublines. In situ hybridization with a DNA probe for the CAD gene showed that the amplified sequences resided in the terminal region of a marker chromosome with elongated q arms. This region stained homogeneously after G-banding. A high incidence of both numerical and structural chromosome aberrations was found in PALA-resistant cells. In hyperdiploid and polyploid cells, containing 2 copies of the marker chromosome, dicentrics were found at a very high frequency. As indicated by in situ hybridization and G-banding, they originated from a rearrangement involving 2 homologous marker chromosomes.  相似文献   

14.
Specific probes derived from the human genes that complement the mutations of two independent temperature-sensitive (ts) mutants of the BHK-21 hamster cell line were used to determine the chromosomal locations of the loci in the human genome. The ts11 gene, which complements a mutation that blocks progression through the G1 phase of the cell cycle and which has now been identified as the structural gene for asparagine synthetase, is a member of a small gene/pseudogene family with four members. In a rodent-human somatic cell hybrid panel, the ts11 genomic locus from which the genomic probe derives segregates with human chromosome region 7cen----7q35, proximal to the TCR beta locus. In situ hybridization maps this locus more precisely to the q21-31 region of chromosome 7. Two other members of the gene family detected by the ts11 probe segregate concordantly with chromosome region 8pter----8q24 and chromosome region 21pter----21q22. Similar experiments using the same rodent-human hybrid panel conducted with a probe identifying the tsBN51 gene, which also encodes a function necessary for G1 progression, mapped this locus to human chromosome 8, proximal to the large amplification unit encompassing the c-myc gene of Colo320 cells. Chromosomal in situ hybridization of the tsBN51 probe confirmed the localization of this gene to chromosome 8, with the most likely location of the gene being 8q21.  相似文献   

15.
Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although >/=16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of >/=320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region.  相似文献   

16.
Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.  相似文献   

17.
We report on a 29-year-old male patient with an inverted 7(q35-qter) duplication diagnosed by combining cytogenetic and FISH studies. Traditional G-banding detected an abnormally long chromosome 7 which was further demonstrated to be entirely of chromosome 7 origin by using fluorescent whole chromosome 7 painting. The presence within the additional segment of a signal for 7q36 region (Williams control probe) and the absence of signals for 7q33 (Y938G5 probe) and 7q34 (Y815G5 probe) regions indicated that the breakpoint for this rearrangement was distal to 7q34 and proximal to 7q36. A distal 7p22 deletion was confirmed by the absence of signal for the 7p subtelomeric probe. Apart from kyphosis, developmental/mental retardation and abnormal ears, the clinical features of the present patient, who is the oldest individual ever reported with this duplication/deletion, were not typical for partial 7q trisomy syndrome. A review of the cases reported with 7(q35-qter) duplication is made and shows important clinical variability but constantly normal pre- and postnatal growth, a feature which can therefore be confirmed as distinctive of distal 7q trisomy syndrome.  相似文献   

18.
染色体畸变是恶性肿瘤细胞的重要遗传学特征, 文章旨在应用BAC DNA克隆鉴定食管癌细胞中的染色体臂和染色体区段的畸变。针对染色体各区段选取5~10个1 Mb BAC DNA, 分别混合制备成特定染色体区段的BAC DNA混合克隆, 然后将染色体臂上覆盖所有区段的上述混合克隆进一步混合制备成特定染色体臂BAC DNA混合克隆。利用简并寡核苷酸引物聚合酶链反应(Degenerate oligonucleotide primed PCR, DOP-PCR)标记染色体臂探针, 利用切口平移法(Nick translation)标记染色体区段探针, 并对食管癌细胞中期染色体进行荧光原位杂交(Fluorescence in situ hybridization, FISH)分析。正常人外周血淋巴细胞中期染色体FISH结果显示, 上述方法标记的探针具有较高的特异性。进一步利用染色体臂混合探针, 确定了多个食管癌细胞中的染色体重排所涉及的特定染色体臂; 利用染色体区段混合探针, 鉴定出KYSE140的t(1q;7q)衍生染色体中1q上的断点范围位于1q32-q41。文章成功建立了1 Mb BAC DNA混合克隆探针标记技术, 并鉴定出多个食管癌细胞中的染色体臂和染色体区段畸变, 不仅为利用M-FISH技术鉴定肿瘤细胞中的染色体畸变提供了更为准确的方法, 而且还可能进一步将该法推广应用于恶性血液病的核型分析以及产前诊断。  相似文献   

19.
人Xp11.2区4.3MbYAC重叠群:大尺度限制图与CpG岛分析   总被引:1,自引:1,他引:0  
人Xp11.2区域具有重要的医学遗传学和基础遗传学价值,它包含很多遗传疾病基因,且至少包含一个逃避X染色体失活的位点,非常规的基化多态也有发现。我们利用这一区域已知的一系列DNA位标,从我们构建的YAC库中筛选出一系列YAC克隆。  相似文献   

20.
Copy number variants (CNVs) of the Williams–Beuren syndrome (WBS) 7q11.23 region are responsible for neurodevelopmental disorders with multi-system involvement and variable expressivity. Typical features of WBS microdeletion comprise a recognizable pattern of facial dysmorphisms, supravalvular aortic stenosis, connective tissue abnormalities, hypercalcemia, and a distinctive neurobehavioral phenotype. Conversely, the phenotype of patients carrying the 7q11.23 reciprocal duplications includes less distinctive facial dysmorphisms and prominent speech delay. The common deletion/duplication ranges in size from 1.5 to 1.8 Mb and encompasses approximately 28 genes. This region is flanked by low copy repeats (LCRs) with greater than ~97% identity, which can mediate non-allelic homologous recombination resulting from misalignment of LCRs during meiosis. A clear genotype–phenotype correlation has been established in WBS only for the elastin gene, which is responsible for the vascular and connective tissue abnormalities. The molecular substrates underlying the other clinical features of 7q11.23 CNVs, including the neurocognitive phenotypes, are still debated. Recent studies suggest that besides the role of the genes in the deleted/duplicated interval, multiple factors such as regulatory sequences, epigenetic mechanisms, parental origin of the CNV, and nucleotide variations in the non-deleted/duplicated allele may be important in determining the variable expressivity of 7q11.23 CNV phenotypes. Here, we review the clinical and molecular findings and the recent insights on genomic disorders associated with CNVs involving the 7q11.23 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号