首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Influence of growth rate on the accumulation of ergosterol in yeast-cells   总被引:6,自引:0,他引:6  
Summary The influence of growth rate on the accumulation of ergosterol inSaccharomyces cerevisiae was studied with glucose, maltose, ethanol and acetic acid as substrates under C- and N-limitations in chemostat experiments. In carbon limited cultures an decrease in ergosterol content with rising dilution rate was observed, whereas in nitrogen limited cells an quite opposite behaviour was attained. A maximum specific rate of ergosterol synthesis of about 2 mg per h per g dry cell mass was calculated for nitrogen limited cultures.  相似文献   

2.
Production of the bacteriocin pediocin SM‐1 by Pediococcus pentosaceus Mees 1934 was investigated in pH‐controlled batch and chemostat cultures using a complex medium containing glucose, sucrose or fructose. In chemostat cultures operated at 150 rpm, 30°C, 60% dissolved oxygen tension, pH 6.5, and D = 0.148 h?1, the pediocin titer reached 185 AU/mL representing an increase of 32% compared with batch cultures in which glucose was used as the carbon source. Pediocin biosynthesis was markedly affected by the growth rate of the producer microorganism. For all carbon sources tested, pediocin production appeared to take place only at dilution rates lower than μmax. However, only glucose supported production at the very low dilution rate of 0.05 h?1 indicating a direct regulation of pediocin biosynthesis by the carbon source. Glucose supported higher biomass productivity and higher pediocin titers and yields compared with the other sugars used. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1481–1486, 2015  相似文献   

3.
In order to study the influence of different carbon sources on the K+-requirements of Candida utilis NCYC 321, this yeast was grown at several different dilution rates in potassium-limited continuous cultures with either glucose, glycerol, ethanol, citrate or lactate serving as the carbon and energy source.It was found that the nature of the carbon source profoundly influenced the cellular potassium content, especially at low dilution rates, but that these differences could not be correlated with any differences in relative growth rate (i.e., / max. And although small amounts of potassium seemingly were needed to serve in osmoregulation and in the cotransport of some acidic carbon sources (lactate and citrate), these requirements were negligible.Independent of carbon source, a strong correlation existed between the intracellular potassium concentration and the yield value on oxygen (Y O), and between cellular potassium concentration and growth rate. From these two correlations it was concluded that potassium probably was involved mainly in processes associated with ATP synthesis in this yeast.Finally the effect of the addition of NaCl to the medium was tested with glucose-containing cultures that were either carbon- or potassium-limited. Up to a concentration of 20 g/l, NaCl was without influence on Y O, Y glucose and q O 2, but effected a slight increase in the cellular potassium content of the potassium-limited cells and a decrease in that of the glucose-limited cells.  相似文献   

4.
The metabolism of Gluconacetobacter oboediens was investigated in relation to different carbon sources for the continuous cultures at the dilution rate of 0.05 h−1. The 13C-flux result implies the formation of metabolic recycles for the case of using glucose and acetate as carbon sources. When glucose and ethanol were used as carbon sources, the specific ethanol uptake rate and the specific acetate production rate increased as the feed ethanol concentration was increased from 40 to 60 g/l, while the specific CO2 production rate and the biomass concentration decreased, where the 13C-metabolic flux result indicates that the glycolysis, oxidative PP pathway, and the tricarboxylic acid (TCA) cycle were less active, resulting in less biomass concentration. The flux result also implies that oxaloacetate decarboxylase flux became negative, so that oxaloacetate is backed up by this pathway, resulting in less activity of glyoxylate pathway. When gluconate was added for the case of using glucose and ethanol as carbon sources, the acetate and cell concentrations as well as gluconate concentrations increased. The glucose and ethanol concentrations decreased concomitantly with the increased feed gluconate concentration. In accordance with these fermentation characteristics, the enzyme activity result indicates that glucose dehydrogenase and glucose-6-phosphate dehydrogenase pathways became less active, while the glycolysis and the TCA cycle was activated as the feed gluconate concentration was increased.  相似文献   

5.
Summary Growth of Saccharomyces cerevisiae was investigated under aerobic conditions in a glucose limited chemostat. The steady state concentrations of cells, glucose and ethanol were measured in dependence of the dilution rate. The growth rate showed a biphasic dependence from the glucose concentration. A shift from respiratory to fermentative metabolism (Crabtree-effect) altering heavily the cell yield and the ethanol yield took place in the range of dilution rates between 0.3 h-1 and 0.5 h-1. Therefore the classical theory of continuous cultures is not applicable on aerobic growth of Saccharomyces cerevisiae under glucose limitation without introducing further premises. On the other hand the steady state cell concentration as a function of the dilution rate fits well the theoretically calculated curves, if cells are cultivated under conditions where only fermentation or respiration is possible.  相似文献   

6.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

7.
Human acylphosphatase (h-AP, EC 3.6.1.7) has been reported to catalyse the hydrolysis of the 1-phosphate group of 1,3-diphosphoglycerate. In vivo operation of this reaction in the yeast Saccharomyces cerevisiae would bypass phosphoglycerate kinase and thus reduce the ATP yield from glycolysis. To investigate whether h-AP can indeed replace the S. cerevisiae phosphoglycerate kinase, a multi-copy plasmid carrying the h-AP gene under control of the yeast TDH3 promoter was introduced into a pgk1 mutant of S. cerevisiae. A strain carrying the expression vector without the h-AP cassette was used as a reference. For both strains, steady-state carbon- and energy-limited chemostat cultures were obtained at a dilution rate of 0.10 h–1on a medium containing a mixture of glucose and ethanol (15% and 85% on a carbon basis, respectively). Although the h-AP strain exhibited a high acylphosphatase activity in cell extracts, switching to glucose as sole carbon and energy source resulted in a complete arrest of glucose consumption and growth. The lack of a functional glycolytic pathway was further evident from the absence of ethanol formation in the presence of excess glucose in the culture. As h-AP cannot replace yeast phosphoglycerate kinase in vivo, the enzyme is not a useful tool to modify the ATP yield of glycolysis in S. cerevisiae.  相似文献   

8.
Gluconobacter oxydans was grown successively in glucose and nitrogen-limited chemostat cultures. Construction of mass balances of organisms growing at increasing dilution rates in glucose-limited cultures, at pH 5.5, revealed a major shift from extensive glucose metabolism via the pentose phosphate pathway to the direct pathway of glucose oxidation yielding gluconic acid. Thus, whereas carbon dioxide production from glucose accounted for 49.4% of the carbon input at a dilution rate (D)=0.05 h-1, it accounted for only 1.3% at D=0.26 h-1. This decline in pentose phosphate pathway activity resulted in decreasing molar growth yields on glucose. At dilution rates of 0.05 h-1 and 0.26 h-1 molar growth yields of 19.5 g/mol and 3.2 g/mol, respectively, were obtained. Increase of the steady state glucose concentration in nitrogen-limited chemostat cultures maintained at a constant dilution rate also resulted in a decreased flow of carbon through the pentose phosphate pathway. Above a threshold value of 15–20 mM glucose in the culture, pentose phosphate pathway activity almost completely inhibited. In G. oxydans the coupling between energy generation and growth was very inefficient; yield values obtained at various dilution rates varied between 0.8–3.4 g/cells synthesized per 0.5 mol of oxygen consumed.  相似文献   

9.
A strain of Nannochloropsis isolated originally from the East China Sea and obtained from Institute of Hydrobiology, Chinese Academy of Sciences was shown to utilize glucose or ethanol for mixotrophic and heterotrophic growth. The highest cell density, 550 mg L− 1 dry weight after culture for 8 days, was obtained during mixotrophic culture with 30 mM glucose. The organic carbon sources had no effect on the net photosynthetic rate, but enhanced the respiratory rate. The addition of an organic carbon source led to an increase in the cell lipid content and a decrease in their eicosapentaenoic acid (EPA) content. The EPA yield was 21.9 mg L− 1 using photoautotrophic culture, and 23.4 mg L− 1 and 23.0 mg L− 1, respectively, in mixotrophic cultivation with glucose or ethanol as the carbon source.  相似文献   

10.
A prototrophic pyruvate-carboxylase-negative (Pyc-) mutant was constructed by deleting the PYC1 and PYC2 genes in a CEN.PK strain of Saccharomyces cerevisiae. Its maximum specific growth rate on ethanol was identical to that of the isogenic wild type but it was unable to grow in batch cultures in glucose-ammonia media. Consistent with earlier reports, growth on glucose could be restored by supplying aspartate as a sole nitrogen source. Ethanol could not replace aspartate as a source of oxaloacetate in batch cultures. To investigate whether alleviation of glucose repression allowed expression of alternative pathways for oxaloacetate synthesis, the Pyc- strain and an isogenic wild-type strain were grown in aerobic carbon-limited chemostat cultures at a dilution rate of 0.10 h-1 on mixtures of glucose and ethanol. In such mixed-substrate chemostat cultures of the Pyc- strain, steady-state growth could only be obtained when ethanol contributed 30% or more of the substrate carbon in the feed. Attempts to further decrease the ethanol content of the feed invariably resulted in washout. In Pyc- as well as in wild-type cultures, levels of isocitrate lyase, malate synthase and phospho-enol-pyruvate carboxykinase in cell extracts decreased with a decreasing ethanol content in the feed. Nevertheless, at the lowest ethanol fraction that supported growth of the Pyc- mutant, activities of the glyoxylate cycle enzymes in cell extracts were still sufficient to meet the requirement for C4-compounds in biomass synthesis. This suggests that factors other than glucose repression of alternative routes for oxaloacetate synthesis prevent growth of Pyc-mutants on glucose.  相似文献   

11.
Acetobacter pasteurianus LMG 1635 was studied for its potential application in the enantioselective oxidation of alcohols. Batch cultivation led to accumulation of acetic acid and loss of viability. These problems did not occur in carbon-limited chemostat cultures (dilution rate = 0.05 h–1) grown on mineral medium supplemented with ethanol, L-lactate or acetate. Nevertheless, biomass yields were extremely low in comparison to values reported for other bacteria. Cells exhibited high oxidation rates with ethanol and racemic glycidol (2,3-epoxy-1-propanol). Ethanol- and glycidol-dependent oxygen-uptake capacities of ethanol-limited cultures were higher than those of cultures grown on lactate or acetate. On all three carbon sources, A. pasteurianus expressed NAD-dependent and dye-linked ethanol dehydrogenase activity. Glycidol oxidation was strictly dye-linked. In contrast to the NAD-dependent ethanol dehydrogenase, the activity of dye-linked alcohol dehydrogenase depended on the carbon source and was highest in ethanol-grown cells. Cell suspensions from chemostat cultures could be stored at 4°C for over 30 days without significant loss of ethanol- and glycidol-oxidizing activity. It is concluded that ethanol-limited cultivation provides an attractive system for production of A. pasteurianus biomass with a high and stable alcohol-oxidizing activity.  相似文献   

12.
Aerobic glucose-limited chemostat cultivations were conducted with Saccharomyces cerevisiae strains NRRL Y132, ATCC 4126 and CBS 8066, using a complex medium. At low dilution rates all three strains utilised glucose oxidatively with high biomass yield coefficients, no ethanol production and very low steady-state residual glucose concentrations in the culture. Above a threshold dilution rate, respiro-fermentative (oxido-reductive) metabolism commenced, with simultaneous respiration and fermentation occurring, which is typical of Crabtree-positive yeasts. However, at high dilution rates the three strains responded differently. At high dilution rates S. cerevisiae CBS 8066 produced 7–8 g ethanol L−1 from 20 g glucose L−1 with concomitant low levels of residual glucose, which increased markedly only close to the wash-out dilution rate. By contrast, in the respiro-fermentative region both S. cerevisiae ATCC 4126 and NRRL Y132 produced much lower levels of ethanol (3–4 g L−1) than S. cerevisiae CBS 8066, concomitant with very high residual sugar concentrations, which was a significant deviation from Monod kinetics and appeared to be associated either with high growth rates or with a fermentative (or respiro-fermentative) metabolism. Supplementation of the cultures with inorganic or organic nutrients failed to improve ethanol production or glucose assimilation. Journal of Industrial Microbiology & Biotechnology (2000) 24, 231–236. Received 09 August 1999/ Accepted in revised form 18 December 1999  相似文献   

13.
Changes in ergosterol content in cultures of Penicillium brevicompactum and Aspergillus versicolor on wood with time, changes in humidity or addition of glucose solutions to wood were studied with HPLC. Lowering of the humidity level caused a very large decline in ergosterol content of cultures of P. brevicompactum on wood over a 10 day period, although small amounts remained after this time. After an initial increase, up to an inoculation time of 45 days, reductions were also observed in control samples maintained at 100% RH, but these were smaller. The amount of ergosterol decreased to very low levels in wood impregnated with low levels of glucose during a 93 day incubation period. Ergosterol concentration in hyphae produced in surface liquid cultures was shown to be higher in mycelia growing on media enriched with nitrogen or with more available nutrients. The concentration of ergosterol in the mycelia of P. brevicompactum in surface liquid cultures varied by a factor of 5 from 2 to 10 mg g. The results clearly show that ergosterol present in solid materials in mainly related to active biomass. With certain prerequisites, ergosterol determinations could also be used for total fungal biomass estimations on wood.  相似文献   

14.
Anaerobic fermentation of glucose (20 g/l) by Saccharomyces cerevisiae CBS 8066 was studied in a chemostat (dilution rate = 0.05–0.25 h–1) at different concentrations of the nitrogen source (5.00 g/l or 0.36 g/l ammonium sulphate). The ethanol yield (g ethanol produced/g glucose consumed) was found to be higher and the glycerol yield (g glycerol formed/g glucose consumed) lower during nitrogen limitation than under carbon limitation. The biomass yield on ATP (g dry weight biomass produced/mol ATP consumed) was consequently found to be lower during nitrogen-limited conditions.  相似文献   

15.
 The glucose carbon fluxes in continuous cultures of Bacillus thuringiensis grown in a complex medium have been studied as a function of the growth rate. The results are discussed in the light of a growth model. From reduced nicotinamide adenine dinucleotide (NADH) and carbon balances it was determined that the fraction of glucose consumed for biomass synthesis decreased with the growth rate, while the glucose flux through the tricarboxylic acid (TCA) cycle diminished after a threshold value of D=0.34 h-1, where D=dilution rate. At the highest growth rate tested, glucose was used almost exclusively as the energy source, via fermentative pathways, which indicates that the yeast extract was used as the carbon source. The specific rate of oxygen consumption increased with growth even after the beginning of the accumulation of acids, indicating that the respiratory chain was not saturated. The results suggest that there is a mismatch between glycolysis and TCA cycle capacity, depending on the growth rate. Furthermore, values of (P/O) ratio and m ATP are presented, where (P/O) is mole of ATP formed per gram atom oxygen consumed by the respiratory chains and m ATP is the maintenance requirement for ATP. Received: 6 September 1995/Received last revision: 13 February 1996/Accepted: 20 February 1996  相似文献   

16.
Temperature and pH had only a slight effect on the astaxanthin content of a Phaffia rhodozyma mutant, but influenced the maximum specific growth rate and cell yield profoundly. The optimum conditions for astaxanthin production were 22°C at pH 5.0 with a low concentration of carbon source. Astaxanthin production was growth-associated, and the volumetric astaxanthin concentration gradually decreased after depletion of the carbon source. The biomass concentration decreased rapidly during the stationary growth phase with a concomitant increase in the cellular content of astaxanthin. Sucrose hydrolysis exceeded the assimilation rates of D-glucose and D-fructose and these sugars accumulated during batch cultivation. D-Glucose initially delayed D-fructose uptake, but D-fructose utilization commenced before glucose depletion. In continuous culture, the highest astaxanthin content was obtained at the lowest dilution rate of 0.043 h–1. The cell yield reached a maximum of 0.48 g cells·g–1 glucose utilized between dilution rates of 0.05 h–1 and 0.07 h–1 and decreased markedly at higher dilution rates. Correspondence to: J. C. Du Preez  相似文献   

17.
The growth of Hansenula polymorpha and Kloeckera sp. 2201 with a mixture of glucose and methanol (38.8%/61.2%, w/w) and the regulation of the methanol dissimilating enzymes alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase were studied in chemostat culture, as a function of the dilution rate. Both organisms utilized and assimilated glucose and methanol simultaneously up to dilution rates of 0.30 h-1 (H. polymorpha) and 0.26h-1, respectively (Kloeckera sp. 2201) which significantly exceeded max found for the two yeasts with methanol as the only source of carbon. At higher dilution rates methanol utilisation ceased and only glucose was assimilated. Over the whole range of mixed-substrate growth both carbon sources were assimilated with the same efficiency as during growth with glucose or methanol alone.In cultures of H. polymorpha, however, the growth yield for glucose was lowered by the unmetabolized methanol at high dilution rates. During growth on both carbon sources the repression of the synthesis of all catabolic methanol enzymes which is normally caused by glucose was overcome by the inductive effect of the simultaneously fed methanol. In both organisms the synthesis of alcohol oxidase was found to be regulated differently as compared to catalase, formaldehyde and formate dehydrogenase. Whereas increasing repression of the synthesis of alcohol oxidase was found with increasing dilution rates as indicated by gradually decreasing specific activities of this enzyme in cell-free extracts, the specific activities of this enzyme in cell-free extracts, the specific activities of catalase and the dehydrogenases increased with increasing growth rates until repression started. The results indicate similar patterns of the regulation of the synthesis of methanol dissimilating enzymes in different methylotrophic yeasts.Abbreviations and Terms C1 Methanol - C6 glucose; D dilution rate (h-1) - D c critical dilution rate (h-1) - q s specific, rate of substrate consumption (g substrate [g cell dry weight]-1 h-1) - q CO2 and q O2 are the specific rates of carbon dioxide release and oxygen consumption (mmol [g cell dry weight]-1 h-1) - RQ respiration quotient (q CO2 q O2 1 ) - s 0(C1) and s 0(C6) are the concentrations of methanol and glucose in the inflowing medium (g l-1) - s residual substrate concentration in the culture liquid (g l-1) - Sp. A. enzyme specific activity - x cell dry weight concentration (gl-1) - Y X/C6 growth yield on glucose (g cell dry weight [g substrate]-1  相似文献   

18.
The DNA, RNA and protein content of the cyanobacterium Anacystis nidulans was determined in light-limited and carbon dioxide-limited chemostat cultures over the dilution rate range, D=0.02 h-1 to 0.19 h-1. The macromolecular contents as a percentage of the dry weight and on a per cell basis varied significantly as a function of organism growth rate and the nature of the growth conditions. For both limitations the RNA content per cell increased [20–55 fg RNA (cell)-1] with increasing dilution rate and also showed an increase as a percentage of the dry weight. The DNA content as a percentage of the dry weight showed a 2-fold decrease with increasing dilution rate over the range examined. On a per cell basis DNA reached a peak at D=0.1 h-1 [4.5 fg DNA (cell)-1] for light-limited organisms and at D=0.08 h-1 [8.0 fg DNA (cell)-1] for carbon dioxide-limited organisms. The q RNA increased with increasing dilution rates over the complete growth rate range examined whilst q DNA reached a maximum at D=0.09 to 0.10 h-1. The protein content as a percentage of the dry weight was greater in CO2-limited organisms than light-limited organisms but in both cultures declined as the dilution rate was increased above D=0.10 h-1.  相似文献   

19.
Cyclic AMP levels in glucose and succinate-fluid and ammonia-limited glucose-containing continuous cultures of Escherichia coli were measured at different bacterial growth rates. Intracellular cyclic AMP concentrations were fairly constant (about 5 μM) at all dilution rates used when glucose was limiting. In ammonia-limited glucose cultures the cyclic AMP content was much lower (about 0.3 μM). In succinate-limited cultures cyclic AMP levels fell from 2.7 to 0.8 μM as dilution rate increased from 0.05 to 0.4 h?1.The effects of cyclic AMP on respiratory and carbon catabolic enzyme levels were studied. There was no indication of a direct cyclic AMP involvement in the regulation of these cellular functions. It seems more likely that the variations in enzyme levles observed resulted from variation of the specific growth rate of cultures.  相似文献   

20.
In order to improve the production rate of l-lysine, a mutant of Corynebacterium glutamicum ATCC 21513 was cultivated in complex medium with gluconate and glucose as mixed carbon sources. In a batch culture, this strain was found to consume gluconate and glucose simultaneously. In continuous culture at dilution rates ranging from 0.2 h−1 to 0.25 h−1, the specific l-lysine production rate increased to 0.12 g g−1 h−1 from 0.1 g g−1 h−1, the rate obtained with glucose as the sole carbon source [Lee et al. (1995) Appl Microbiol Biotechnol 43:1019–1027]. It is notable that l-lysine production was observed at higher dilution rates than 0.4 h−1, which was not observed when glucose was the sole carbon source. The positive effect of gluconate was confirmed in the shift of the carbon source from glucose to gluconate. The metabolic transition, which has been characterized by decreased l-lysine production at the higher glucose uptake rates, was not observed when gluconate was added. These results demonstrate that the utilization of gluconate as a secondary carbon source improves the maximum l-lysine production rate in the threonine-limited continuous culture, probably by relieving the limiting factors in the lysine synthesis rate such as NADPH supply and/or phosphoenolpyruvate availability. Received: 16 May 1997 / Received revision: 28 August 1997 / Accepted: 29 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号