首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viperids are a species rich clade of snakes that vary greatly in both morphology and ecology. Many species in the family express tail specializations used for defensive warnings, prey lures, and stability during locomotion and striking. To examine the relationships among ecology, behavior, and vertebral number in the family Viperidae, morphological data (maximum total length and the number of pre-cloacal and caudal vertebrae), macrohabitat use, and tail specialization for 157 viperids were gleaned from published sources. A composite tree topology was constructed from multiple published viperid phylogenies for independent contrasts analysis. The number of vertebrae was strongly correlated with the total length of the snake. Results of both non-phylogenetic and phylogenetically corrected analysis showed that macrohabitat use did not strongly influence total snake length. However, the number of vertebrae per unit length did vary among species according to macrohabitat. Specifically, vertebral density increased with increasing arboreality. Overall, viperids showed a positive correlation between the number of caudal and pre-cloacal vertebrae, but separately rattlesnakes had a significant negative correlation. Species with prehensile tails and those that caudal lure had the most caudal vertebrae. The increased caudal segments of prehensile and luring tails likely improve performance when grasping small vegetation for support or imitating invertebrate prey. These results illustrate that vertebral number is a primary characteristic involved in the diversification of viper species and ecology.  相似文献   

2.
The mouse mutant curly tail is thought to be inherited as an autosomal recessive (ct/ct) with incomplete penetrance so that approximately 60% of ct/ct individuals exhibit the curly tail (CT) phenotype. By outcrossing ct/ct with mouse stock carrying specific heterozygous combinations of Robertsonian (Rb) chromosomes, trisomy 16 (Ts16) and Ts19 mouse fetuses (and their chromosomally balanced littermates) were derived which were heterozygous for the ct gene. All of the Ts16 (ct/Rb;Rb) fetuses, studied between days 14-19 gestation had tail malformations, 86% of which were tail flexion defects (TFD) apparently very similar to the curly tail phenotype. Neither Ts19 nor any of the chromosomally balanced (ct/Rb) littermates from both experimental crosses showed any type of tail or other spinal malformation. At the 27-29 somite stage of development, Ts16 (ct/Rb;Rb) fetuses did not show any significant delay in the closure of the posterior neuropore (PNP) compared with their littermate controls, suggesting that the tail malformation observed in Ts16 (ct/Rb;Rb) occur as a result of mechanisms which differ significantly from those thought to be responsible to causing the curly tail malformation.  相似文献   

3.
The salamander tail displays different functions and morphologies in the aquatic and terrestrial stages of species with complex life cycles. During metamorphosis the function of the tail changes; the larval tail functions in aquatic locomotion while the juvenile and adult tail exhibits tail autotomy and fat storage functions. Because tail injury is common in the aquatic environment, we hypothesized that mechanisms have evolved to prevent altered larval tail morphology from affecting normal juvenile tail morphology. The hypothesis that injury to the larval tail would not affect juvenile tail morphology was investigated by comparing tail development and regeneration in Hemidactylium scutatum (Caudata: Plethodontidae). The experimental design included larvae with uninjured tails and with cut tails to simulate natural predation. The morphological variables analyzed to compare normally developing and regenerating tails were 1) tail length, 2) number of caudal vertebrae, and 3) vertebral centrum length. Control and experimental groups do not differ in time to metamorphosis or snout-vent length. Tails of experimental individuals are shorter than controls, yet they display a significantly higher rate of tail growth and less resorption of tail tissue. Anterior to the site of tail injury, caudal vertebrae in juveniles display greater average centrum lengths. Results suggest that regenerative mechanisms are functioning not only to produce structures, but also to influence growth of existing structures. Further investigation of juvenile and adult stages as well as comparative analyses of tail morphology in salamanders with complex life cycles will enhance our understanding of amphibian development and of the evolution of amphibian life cycles. J Morphol 233:15–29, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Chameleons (Chamaeleonidae) are known for their arboreal lifestyle, in which they make use of their prehensile tail. Yet, some species have a more terrestrial lifestyle, such as Brookesia and Rieppeleon species, as well as some chameleons of the genera Chamaeleo and Bradypodion. The main goal of this study was to identify the key anatomical features of the tail vertebral morphology associated with prehensile capacity. Both interspecific and intra-individual variation in skeletal tail morphology was investigated. For this, a 3D-shape analysis was performed on vertebral morphology using μCT-images of different species of prehensile and nonprehensile tailed chameleons. A difference in overall tail size and caudal vertebral morphology does exist between prehensile and nonprehensile taxa. Nonprehensile tailed species have a shorter tail with fewer vertebrae, a generally shorter neural spine and shorter transverse processes that are positioned more anteriorly (with respect to the vertebral center). The longer tails of prehensile species have more vertebrae as well as an increased length of the processes, likely providing a greater area for muscle attachment. At the intra-individual level, regional variation is observed with more robust proximal tail vertebrae having longer processes. The distal part has relatively longer vertebrae with shorter processes. Although longer, the small size and high number of the distal vertebrae allows the tail to coil around perches.  相似文献   

5.
Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae   总被引:3,自引:0,他引:3  
To address the expression and function of Hoxb13, the 5' most Hox gene in the HoxB cluster, we have generated mice with loss-of-function and beta-galactosidase reporter insertion alleles of this gene. Mice homozygous for Hoxb13 loss-of-function mutations show overgrowth in all major structures derived from the tail bud, including the developing secondary neural tube (SNT), the caudal spinal ganglia, and the caudal vertebrae. Using the beta-galactosidase reporter allele of Hoxb13, also a loss-of-function allele, we found that the expression patterns of Hoxb13 in the developing spinal cord and caudal mesoderm are closely associated with overgrowth phenotypes in the tails of homozygous mutant animals. These phenotypes can be explained by the observed increased cell proliferation and decreased levels of apoptosis within the tail of homozygous mutant mice. This analysis of Hoxb13 function suggests that this 5' Hox gene may act as an inhibitor of neuronal cell proliferation, an activator of apoptotic pathways in the SNT, and as a general repressor of growth in the caudal vertebrae.  相似文献   

6.
The relative numbers of trunk (body) and caudal (tail) vertebrae in snakes might be influenced by at least four processes: (1) natural selection for crawling speed, (2) fecundity selection for larger trunk size in females, (3) sexual selection for longer bodies or tails in males and/or (4) developmental constraints (if an increase in the number of body vertebrae requires a decrease in the number of tail vertebrae, or vice versa). These four hypotheses generate different predictions about the relationship between sex differences in the numbers of body vertebrae vs. tail vertebrae. I collated published data to test these predictions, both with raw data and using phylogenetically independent contrasts. Some snake lineages show a negative correlation between the magnitude of sex disparities in trunk vs. caudal vertebrae whereas other lineages show the reverse pattern, or no correlation. Thus, different selective pressures seem to have been important in different lineages. Vertebral numbers in snakes may offer a useful model system in which to explore the conflicts between natural, fecundity and sexual selection.  相似文献   

7.
Prehensile tails, capable of suspending the entire body weight of an animal, have evolved in parallel in New World monkeys (Platyrrhini): once in the Atelinae (Alouatta, Ateles, Brachyteles, Lagothrix), and once in the Cebinae (Cebus, Sapajus). Structurally, the prehensile tails of atelines and cebines share morphological features that distinguish them from nonprehensile tails, including longer proximal tail regions, well‐developed hemal processes, robust caudal vertebrae resistant to higher torsional and bending stresses, and caudal musculature capable of producing higher contractile forces. The functional significance of shape variation in the articular surfaces of caudal vertebral bodies, however, is relatively less well understood. Given that tail use differs considerably among prehensile and nonprehensile anthropoids, it is reasonable to predict that caudal vertebral body articular surface area and shape will respond to use‐specific patterns of mechanical loading. We examine the potential for intervertebral articular surface contour curvature and relative surface area to discriminate between prehensile‐tailed and nonprehensile‐tailed platyrrhines and cercopithecoids. The proximal and distal intervertebral articular surfaces of the first (Ca1), transitional and longest caudal vertebrae were examined for individuals representing 10 anthropoid taxa with differential patterns of tail‐use. Study results reveal significant morphological differences consistent with the functional demands of unique patterns of tail use for all vertebral elements sampled. Prehensile‐tailed platyrrhines that more frequently use their tails in suspension (atelines) had significantly larger and more convex intervertebral articular surfaces than all nonprehensile‐tailed anthropoids examined here, although the intervertebral articular surface contour curvatures of large, terrestrial cercopithecoids (i.e., Papio sp.) converge on the ateline condition. Prehensile‐tailed platyrrhines that more often use their tails in tripodal bracing postures (cebines) are morphologically intermediate between atelines and nonprehensile tailed anthropoids. J. Morphol. 275:1300–1311, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Wang T  Fang ZM  Lei JH  Guan F  Liu WQ  Bartlett A  Whitfield P  Li YL 《Parasitology》2012,139(2):244-247
A traditional assumption is that schistosome cercariae lose their tails at the onset of penetration. It has, however, recently been demonstrated that, for Schistosoma mansoni, cercarial tails were not invariably being shed as penetration took place and a high proportion of tails entered human skin under experimental conditions. This phenomenon was termed delayed tail loss (DTL). In this paper, we report that DTL also happens with S. japonicum cercariae during penetration of mouse skin. It occurred at all cercarial densities tested, from as few as 10 cercariae/2·25 cm(2) of mouse skin up to 200 cercariae. Furthermore, it was demonstrated that there was a density-dependent increase in DTL as cercarial densities increased. No such density-dependent enhancement was shown for percentage attachment over the same cercarial density range.  相似文献   

9.
Previously undescribed specimens of the aquatic microsaur Microbrachis pelikani Fritsch from the Upper Carboniferous of Nýřany, Czech Republic, demonstrate the presence of a deep-swimming-adapted tail supported by up to 46 postsacral vertebrae. The tail appears to have lengthened with ontogeny. Most microsaurs appear to have been terrestrial and because the group has been perceived to be related to the amniotes, all (including Microbrachis ) had been reconstructed with slender tapering tails. Microbrachis appears to be an early offshoot of the microsaurs and it is unclear whether the deep tail is a primitive retention or an acquired characteristic of the genus.  相似文献   

10.

Background

It has been assumed that the unusual tail club of ankylosaurid dinosaurs was used actively as a weapon, but the biological feasibility of this behaviour has not been examined in detail. Ankylosaurid tail clubs are composed of interlocking vertebrae, which form the handle, and large terminal osteoderms, which form the knob.

Methodology/Principal Findings

Computed tomographic (CT) scans of several ankylosaurid tail clubs referred to Dyoplosaurus and Euoplocephalus, combined with measurements of free caudal vertebrae, provide information used to estimate the impact force of tail clubs of various sizes. Ankylosaurid tails are modeled as a series of segments for which mass, muscle cross-sectional area, torque, and angular acceleration are calculated. Free caudal vertebrae segments had limited vertical flexibility, but the tail could have swung through approximately 100° laterally. Muscle scars on the pelvis record the presence of a large M. longissimus caudae, and ossified tendons alongside the handle represent M. spinalis. CT scans showed that knob osteoderms were predominantly cancellous, which would have lowered the rotational inertia of the tail club and made it easier to wield as a weapon.

Conclusions/Significance

Large knobs could generate sufficient force to break bone during impacts, but average and small knobs could not. Tail swinging behaviour is feasible in ankylosaurids, but it remains unknown whether the tail was used for interspecific defense, intraspecific combat, or both.  相似文献   

11.
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.  相似文献   

12.
We quantified muscle activity in tails of lizards (Gekko gecko) during running and after autotomy of the tail. We chose different animals and varied where we broke the tails in order to obtain three experimental preparations having: no regenerated tissue or prior tail loss (non-regenerated), a large regenerated portion and a few original caudal vertebrae (partially regenerated), and only regenerated tissue (fully regenerated). All observed axial motor patterns were rhythmic. During running of intact animals, muscles in non-regenerated tails were activated in an alternating, unilateral pattern that was propagated posteriorly. After autotomy, non-regenerated tails had unilateral muscle activity that alternated between the left and right sides and propagated anteriorly. Autotomized, partially regenerated tails had unilateral, alternating muscle activity that lacked any longitudinal propagation. Autotomized, fully regenerated tails had periodic muscle activity that occurred simultaneously for both left and right sides and all longitudinal positions. Neither tactile stimulation nor removal of the tail tip prior to autotomizing the tail affected the motor pattern. Several features of the motor pattern of autotomized tails changed significantly with increased time after autotomy. Autotomized tails with one or more spinal segments moved longer and more vigorously than autotomized tails consisting entirely of regenerated (unsegmented) tissue.Abbreviations AREA rectified integrated area - CYCDUR cycle duration or time between the onsets of successive bursts for a single channel - DUTY duty factor = EMG duration/CYCDUR - EMG electromyogram - EMGDUR EMG duration - INTENSITY = AREA/EMGDUR - ISPL intersegmental phase lag = PLAG/number of intervening muscle segments - LAG among site lag time = difference in onset times of adjacent ipsilateral electrode sites - PLAG phase lag = LAG/CYCDUR - RELISPL relative intersegmental phase lag = RELPLAG/number of intervening muscle segments - RELPLAG relative phase lag = LAG/EMGDUR  相似文献   

13.
Vaglia, JL., White, K, and Case, A. 2012. Evolving possibilities: postembryonic axial elongation in salamanders with biphasic (Eurcyea cirrigera, Eurycea longicauda, Eurycea quadridigitata) and paedomorphic life cycles (Eurycea nana and Ambystoma mexicanum). —Acta Zoologica (Stockholm) 93 : 2–13. Typically, the number of vertebrae an organism will have postembryonically is determined during embryogenesis via the development of paired somites. Our research investigates the phenomenon of postembryonic vertebral addition in salamander tails. We describe body and tail growth and patterns of postsacral vertebral addition and elongation in context with caudal morphology for four plethodontids (Eurycea) and one ambystomatid. Eurycea nana and Ambystoma mexicanum have paedomorphic life cycles; Eurcyea cirrigera, Eurycea longicauda and Eurycea quadridigitata are biphasic. Specimens were collected, borrowed and/or purchased, and cleared and stained for bone and cartilage. Data collected include snout‐vent length (SVL), tail length (TL), vertebral counts and centrum lengths. Eurycea species with biphasic life cycles had TLs that surpassed SVL following metamorphosis. Tails in paedomorphic species elongated but rarely exceeded body length. Larger TLs were associated with more vertebrae and longer vertebrae in all species. We observed that rates of postsacral vertebral addition varied little amongst species. Regional variation along the tail becomes prominent following metamorphosis in biphasic developers. In all species, vertebrae in the posterior one‐half of the tail taper towards the tip. We suggest that a developmental link might exist between the ability to continually add vertebrae and regeneration in salamanders.  相似文献   

14.
The evolution of sexual dimorphism is an important topic of evolutionary biology, but few studies have investigated the determinants of sexual dimorphism over broad phylogenetic scales. The number of vertebrae is a discrete character influencing multiple traits of individuals, and is particularly suitable to analyze processes determining morphological variation. We evaluated the support of multiple hypotheses concerning evolutionary processes that may cause sexual dimorphism in the number of caudal vertebrae in Urodela (tailed amphibians). We obtained counts of caudal vertebrae from >2,000 individuals representing 27 species of salamanders and newts from Europe and the Near East, and integrated these data with a molecular phylogeny and multiple information on species natural history. Per each species, we estimated sexual dimorphism in caudal vertebrae number. We then used phylogenetic least squares to relate this sexual dimorphism to natural history features (courtship complexity, body size dimorphism, sexual ornamentation, aquatic phenology) representing alternative hypotheses on processes that may explain sexual dimorphism. In 18 % of species, males had significantly more caudal vertebrae than females, while in no species did females have significantly more caudal vertebrae. Dimorphism was highest in species where males have more complex courtship behaviours, while the support of other candidate mechanisms was weak. In many species, males use the tail during courtship displays, and sexual selection probably favours tails with more vertebrae. Dimorphism for the number of tail vertebrae was unrelated to other forms of dimorphism, such as sexual ornamentation or body size differences. Multiple sexually dimorphic features may evolve independently because of the interplay between sexual selection, fecundity and natural selection.  相似文献   

15.
Bacteriophage SPO1, a structually complex phage with hydroxymethyl uracil replacing thymine, has been studied by structural and chemical methods with the aim of defining the virion organization. The contractile tail of SPO1 consists of a complex baseplate, a tail tube, and a 140-nm-long sheath composed of stacked disks (4.1 nm repeat), each containing six subunits of molecular weight 60,300. The subunits are arranged in six parallel helices, each with a helical screw angle (omega 0) of 22.5 degrees. The baseplate was shown to undergo a structural rearrangement during tail contraction into a hexameric pinwheel. A mutation in gene 8 which produced unattached heads and tails also produced tails of different lengths. The tail length distribution suggests that the smallest integral length increment is a single disk of subunits. The structural arrangement of subunits in long tails is identical to that of normal tails, and the tails can contract. Many of the long tails showed partial stain penetration within the tail tube to a point which coincides with the top of a unit-length tail. The implications of these findings with respect to tail length regulation are discussed.  相似文献   

16.
Understanding both the role of selection in driving phenotypic change and its underlying genetic basis remain major challenges in evolutionary biology. Here, we use modern tools to revisit a classic system of local adaptation in the North American deer mouse, Peromyscus maniculatus, which occupies two main habitat types: prairie and forest. Using historical collections, we find that forest‐dwelling mice have longer tails than those from nonforested habitat, even when we account for individual and population relatedness. Using genome‐wide SNP data, we show that mice from forested habitats in the eastern and western parts of their range form separate clades, suggesting that increased tail length evolved independently. We find that forest mice in the east and west have both more and longer caudal vertebrae, but not trunk vertebrae, than nearby prairie forms. By intercrossing prairie and forest mice, we show that the number and length of caudal vertebrae are not correlated in this recombinant population, indicating that variation in these traits is controlled by separate genetic loci. Together, these results demonstrate convergent evolution of the long‐tailed forest phenotype through two distinct genetic mechanisms, affecting number and length of vertebrae, and suggest that these morphological changes—either independently or together—are adaptive.  相似文献   

17.
18.
Corin is a cardiac serine protease that activates natriuretic peptides. It consists of an N-terminal cytoplasmic tail, a transmembrane domain, and an extracellular region with a C-terminal trypsin-like protease domain. The transmembrane domain anchors corin on the surface of cardiomyocytes. To date, the function of the corin cytoplasmic tail remains unknown. By examining the difference between human and mouse corin cytoplasmic tails, analyzing their gene sequences, and verifying mRNA expression in hearts, we show that both human and mouse corin genes have alternative exons encoding different cytoplasmic tails. Human corin isoforms E1 and E1a have 45 and 15 amino acids, respectively, in their cytoplasmic tails. In transfected HEK 293 cells and HL-1 cardiomyocytes, corin isoforms E1 and E1a were expressed at similar levels. Compared with isoform E1a, however, isoform E1 was more active in processing natriuretic peptides. By cell surface labeling, glycosidase digestion, Western blotting, and flow cytometry, we found that corin isoform E1 was activated more readily as a result of more efficient cell surface targeting. By mutagenesis, we identified a DDNN motif in the cytoplasmic tail of isoform E1 (which is absent in isoform E1a) that promotes corin surface targeting in both HEK 293 and HL-1 cells. Our data indicate that the sequence in the cytoplasmic tail plays an important role in corin cell surface targeting and zymogen activation.  相似文献   

19.
The mechanism of length determination in bacteriophage λ tails is discussed as a model for regulation in protein assembly systems.The λ tail is a long flexible tube ending in a conical part and a single tail fiber. Its length is exactly determined in the sense that the number of major tail protein (gpV) molecules, which comprise more than 80% of the mass of the tail, is exactly the same in all tails. Assembly of gpV is regulated by the initiator complex, which contains the tail fiber and the conical part,and by the terminator protein gpU. There are two key points in the assembly of gpV with respect to length determination. (1) Assembly of gpV on the initiator pauses at the correct tail length. Binding of gpU to the tail only fixes the pause firmly. (2) When the tail length is too short, binding of gpU to tails is inhibited.Deletions and a duplication (both in frame) in gene H, which codes for one of the proteins in the initiator, result in production of phage particles with altered tail length. Moreover, the tail length is roughly proportional to the length of the mutated versions of gene H. This shows that the tail length is measured by the length of gene H protein (gpH), which seems to be approximately as long as the tail tube, if extended like a thread, according to secondary structure prediction (α-helices connected by other structures). Various pieces of evidence show that about six molecules of gpH are attached to the remaining portion of the initiator by the C-terminal part and folded into a somewhat compact form, while they are elongated as they are enclosed in the tail tube during assembly of gpV. Unlike interaction between the length-measuring genome RNA and the coat protein of tobacco mosaic virus, the major tail protein gpV does not bind specifically to the ruler protein gpH. Rather, gpH determines the tail length by inhibiting the binding of gpU to short tails and by signalling the pause when the correct tail length is attained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号