首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Megestrol acetate is a common and efficient anticancer progesterone. To explore the activity and the therapeutic mechanisms of megestrol acetate in endometrial cancer, human endometrial cancer cell lines Ishikawa and HHUA overexpressing progesterone receptor A (PR-A) and progesterone receptor B (PR-B) were treated with megestrol acetate. Cell viability, apoptosis, cycle arrest, and senescence, as well as the expressions of p21 and p16, two hallmarks of cellular senescence, were evaluated. Compared with the control, >10 nmol/L megestrol acetate treatment could significantly reduce endometrial cancer cell growth, and induce the irreversible G1 arrest and cell senescence. The expression of cyclin D1 in megestrol acetate treated cells was downregulated, while the expressions of p21 and p16 were upregulated via PR-B isoform. FOXO1 inhibitor AS1842856 could significantly abrogate megestrol acetate-induced cell senescence, suggesting that FOXO1 was involved in megestrol acetate/PR-B axis. These findings may provide a new understanding for the treatment of human endometrial cancer.  相似文献   

3.
4.
Atrial fibrosis induced by aging is one of the main causes of atrial fibrillation (AF), but the potential molecular mechanism is not clear. Acetyltransferase p300 participates in the cellular senescence and fibrosis, which might be involved in the age-related atrial fibrosis. Four microarray datasets generated from atrial tissue of AF patients and sinus rhythm (SR) controls were analyzed to find the possible relationship of p300 (EP300) with senescence and fibrosis. And then, biochemical assays and in vivo electrophysiological examination were performed on older AF patients, aging mice, and senescent atrial fibroblasts. The results showed that (1) the left atrial tissues of older AF patients, aging mouse, and senescence human atrial fibroblasts had more severe atrial fibrosis and higher protein expression levels of p300, p53/acetylated p53 (ac-p53)/p21, Smad3/p-Smads, and fibrosis-related factors. (2) p300 inhibitor curcumin and p300 knockdown treated aging mouse and senescence human atrial fibroblasts reduced the senescence ratio of atrial fibroblasts, ameliorated the atrial fibrosis, and decreased the AF inducibility. In contrast, over-expression of p300 can lead to the senescence of atrial fibroblasts and atrial fibrosis. (3) p53 knockdown decreased the expression of aging and fibrosis-related proteins. (4) Co-immunoprecipitation and immunofluorescence showed that p53 forms a complex with smad3 and directly regulates the expression of smad3 in atrial fibroblasts. Our findings suggest that the mechanism of atrial fibrosis induced by aging is, at least, partially dependent on the regulation of p300, which provides new sights into the AF treatment, especially for the elderly.  相似文献   

5.
MAGE-A genes are a subfamily of the melanoma antigen genes (MAGEs), whose expression is restricted to tumor cells of different origin and normal tissues of the human germline. Although the specific function of individual MAGE-A proteins is being currently explored, compelling evidence suggest their involvement in the regulation of different pathways during tumor progression. We have previously reported that MageA2 binds histone deacetylase (HDAC)3 and represses p53-dependent apoptosis in response to chemotherapeutic drugs. The promyelocytic leukemia (PML) tumor suppressor is a regulator of p53 acetylation and function in cellular senescence. Here, we demonstrate that MageA2 interferes with p53 acetylation at PML-nuclear bodies (NBs) and with PMLIV-dependent activation of p53. Moreover, a fraction of MageA2 colocalizes with PML-NBs through direct association with PML, and decreases PMLIV sumoylation through an HDAC-dependent mechanism. This reduction in PML post-translational modification promotes defects in PML-NBs formation. Remarkably, we show that in human fibroblasts expressing RasV12 oncogene, MageA2 expression decreases cellular senescence and increases proliferation. These results correlate with a reduction in NBs number and an impaired p53 response. All these data suggest that MageA2, in addition to its anti-apoptotic effect, could have a novel role in the early progression to malignancy by interfering with PML/p53 function, thereby blocking the senescence program, a critical barrier against cell transformation.  相似文献   

6.
7.
Mitochondrial involvement has not been identified in the programmed cell death (PCD) of leaf senescence which suggests that processes such as those involving reactive oxygen species (ROS) are controlled by chloroplasts. We report that transgenic tobacco (DeltandhF), with the plastid ndhF gene knocked-out, shows low levels of the plastid Ndh complex, homologous to mitochondrial complex I, and more than a 30-day-delay in leaf senescence with respect to wt. The comparison of activities and protein levels and analyses of genetic and phenotypic traits of wtxDeltandhF crosses indicate that regulatory roles of mitochondria in animal PCD are assumed by chloroplasts in leaf senescence. The Ndh complex would increase the reduction level of electron transporters and the generation of ROS. Chloroplastic control of leaf senescence provides a nonclassical model of PCD and reveals an unexpected role of the plastid ndh genes that are present in most higher plants.  相似文献   

8.
Deborah Ann Roach 《Genetica》1993,91(1-3):53-64
Senescence is a decline in age-specific survival and reproduction with advancing age. Studies of evolutionary plant senescence are designed to explain this decline in life history components within the context of natural selection. A review of studies of plant demography reveals senescent declines in both annual and perennial plants, but also suggests that there are some plant species which may not be expected to show senescence. Thus, future comparative studies of closely related species, with and without senescence, should be possible. The assumptions of the major evolutionary theories of senescence are evaluated for their validity with respect to plants. Different plant species violate one or more of the assumptions of the theories, yet the consequences of violating these assumptions have never been investigated. Whereas, to date, evolutionary senescence has been studied only indirectly in plants, it is concluded that plants provide good experimental systems for clarifying our understanding of senescence in natural populations.  相似文献   

9.
Plant senescence     
Senescence is defined by evolutionary biologists as the decline in age-specific survival and fecundity that reflects declines in the performance of many different physiological functions in individuals of sufficiently advanced age. Senescence is widely recognized to occur among plants with a single reproductive event, but the extent to which senescence occurs among plants with multiple reproductive events is open to debate. The latter may show gradual or even negligible senescence. The pattern of senescence cannot readily be ascribed to either morphology or phylogeny. While it has been widely argued that clonal growth allows plants to escape senescence, this is not necessarily the case.  相似文献   

10.
Human senescence     
Human life expectancy has increased dramatically through improvements in public health, housing, nutrition and general living standards. Lifespan is now limited chiefly by intrinsic senescence and its associated frailty and diseases. Understanding the biological basis of the ageing process is a major scientific challenge that will require integration of molecular, cellular, genetic and physiological approaches. This article reviews progress that has been made to date, particularly with regard to the genetic contribution to senescence and longevity, and assesses the scale of the task that remains.  相似文献   

11.
12.
《Cell metabolism》2023,35(4):667-684.e6
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

13.
《Current biology : CB》2022,32(10):R448-R452
  相似文献   

14.
15.
Werner syndrome (WS) results from dysfunction of the WRN protein, and is associated with premature aging and early death. Here we report that loss of WRN function elicits accumulation of the Yes-associated protein (YAP protein), a major effector of the Hippo tumor suppressor pathway, both experimentally and in WS-derived fibroblasts. YAP upregulation correlates with slower cell proliferation and accelerated senescence, which are partially mediated by the formation of a complex between YAP and the PML protein, whose activity promotes p53 activation. The ATM kinase is necessary for YAP and PML accumulation in WRN-depleted cells. Notably, the depletion of either YAP or PML partially impairs the induction of senescence following WRN loss. Altogether, our findings reveal that loss of WRN activity triggers the activation of an ATM-YAP-PML-p53 axis, thereby accelerating cellular senescence. The latter has features of SASP (senescence-associated secretory phenotype), whose protumorigenic properties are potentiated by YAP, PML and p53 depletion.  相似文献   

16.
Atrial fibrosis induced by aging is one of the main causes of atrial fibrillation (AF), but the potential molecular mechanism is not clear. Acetyltransferase p300 participates in the cellular senescence and fibrosis, which might be involved in the age‐related atrial fibrosis. Four microarray datasets generated from atrial tissue of AF patients and sinus rhythm (SR) controls were analyzed to find the possible relationship of p300 (EP300) with senescence and fibrosis. And then, biochemical assays and in vivo electrophysiological examination were performed on older AF patients, aging mice, and senescent atrial fibroblasts. The results showed that (1) the left atrial tissues of older AF patients, aging mouse, and senescence human atrial fibroblasts had more severe atrial fibrosis and higher protein expression levels of p300, p53/acetylated p53 (ac‐p53)/p21, Smad3/p‐Smads, and fibrosis‐related factors. (2) p300 inhibitor curcumin and p300 knockdown treated aging mouse and senescence human atrial fibroblasts reduced the senescence ratio of atrial fibroblasts, ameliorated the atrial fibrosis, and decreased the AF inducibility. In contrast, over‐expression of p300 can lead to the senescence of atrial fibroblasts and atrial fibrosis. (3) p53 knockdown decreased the expression of aging and fibrosis‐related proteins. (4) Co‐immunoprecipitation and immunofluorescence showed that p53 forms a complex with smad3 and directly regulates the expression of smad3 in atrial fibroblasts. Our findings suggest that the mechanism of atrial fibrosis induced by aging is, at least, partially dependent on the regulation of p300, which provides new sights into the AF treatment, especially for the elderly.  相似文献   

17.
Cellular senescence appears to be an important part of organismal aging. Cellular senescence is characterized by flattened enlarged morphology, inhibition of DNA replication in response to growth factors, inability to phosphorylate the pRb tumor suppressor protein, inability to produce c-fos or AP-1 and overexpression of a variety of genes, notably p21 (CIP-1/WAF-1) and p16INK. It is now clear that certain early mitotic signals become defective with the onset of senescence. Among these is the PLD/PKC pathway. Evidence suggests that activation of PLD and PKC is critical for mitogenesis. Recent data suggest that the defect in PLD/PKC in cellular senescence is a result of elevated cellular ceramide levels which inhibit PLD activation. It appears that the elevated ceramide is a result of neutral sphingomyelinase activation. Ceramide acts to inhibit the activation of PLD by possibly three mechanisms, inhibiting activation by Rho, translocation to the membrane and gene expression. Addition of ceramide to young cells not only inhibits PLD but also recapitulates all the standard measures of cellular senescence as described above.  相似文献   

18.
Comment on: Hirota Y, et al. Proc Natl Acad Sci USA 2011; 108:18073-8  相似文献   

19.
高等植物叶片的衰老   总被引:44,自引:5,他引:39  
蛋白质丧失是叶片衰老的一个早期表现,降解的蛋白主要是可溶性蛋白中部分Ⅰ蛋白,随衰老加深,叶绿素含量、光合速率下降,保护酶活性降低。叶片这些衰老的表现是体内活性氧、自由基代谢失调累积的结果。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号