首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in genomics and proteomics have generated a change in emphasis from hypothesis-based to discovery-based investigations. Genomic and proteomic studies based on differential expression microarrays or comparative proteomics often provide many potential candidates for functionally important roles in normal and diseased cells. High throughput technologies to address protein and gene function in situ are still necessary to exploit these emerging advances in gene and protein discovery in order to validate these identified targets. The pharmaceutical industry is particularly interested in target validation, and has identified it as the critical early step in drug discovery. An especially powerful approach to target validation is a direct protein knockdown strategy called chromophore-assisted laser inactivation (CALI) which is a means of testing the role of specific proteins in particular cellular processes. Recent developments in CALI allow for its high throughput application to address many proteins in tandem. Thus, CALI may have applications for high throughput hypothesis testing, target validation or proteome-wide screening.  相似文献   

2.
Tissue microarrays have become an essential tool in translational pathology. They are used to confirm results from other experimental platforms, such as expression microarrays, as well as a primary tool to explore the expression profile of proteins by immunohistochemical analysis. Tissue microarrays are routinely used molecular epidemiology, drug development and determining the diagnostic, prognostic and predictive value of new biomarkers. By applying traditional protein based assays, as well as novel assays to the platform, tissue microarrays have gained a new utility as a proteomic tool for both basic science as well as clinical investigation. This article will explore the new approaches that are being applied to tissue microarrays to, characterize the human proteome, and new technologies that allow tissue microarrays to function as a protein array. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged  相似文献   

3.
The field of proteomics has undergone rapid advancements over the last decade and protein microarrays have emerged as a promising technological platform for the challenging task of studying complex proteomes. This gel-free approach has found an increasing number of applications due to its ability to rapidly and efficiently study thousands of proteins simultaneously. Different protein microarrays, including capture arrays, reverse-phase arrays, tissue microarrays, lectin microarrays and cell-free expression microarrays, have emerged, which have demonstrated numerous applications for proteomics studies including biomarker discovery, protein interaction studies, enzyme-substrate profiling, immunological profiling and vaccine development, among many others. The need to detect extremely low-abundance proteins in complex mixtures has provided motivation for the development of sensitive, real-time and multiplexed detection platforms. Conventional label-based approaches like fluorescence, chemiluminescence and use of radioactive isotopes have witnessed substantial advancements, with techniques like quantum dots, gold nanoparticles, dye-doped nanoparticles and several bead-based methods now being employed for protein microarray studies. In order to overcome the limitations posed by label-based technologies, several label-free approaches like surface plasmon resonance, carbon nanotubes and nanowires, and microcantilevers, among others, have also advanced in recent years, and these methods detect the query molecule itself. The scope of this article is to outline the protein microarray techniques that are currently being used for analytical and function-based proteomics and to provide a detailed analysis of the key technological advances and applications of various detection systems that are commonly used with microarrays.  相似文献   

4.
5.
Unraveling the complexity of cell regulatory systems and monitoring their operations under normal and pathological circumstances is one of the major outstanding biomedical challenges. The phosphoproteome has emerged as a rich source of biomarkers for tracking cell signaling and disease, and many of the kinases that phosphorylate proteins represent attractive targets for drug development. Over 100,000 phosphorylation sites distributed in most of the 23,000 proteins encoded by the human genome have already been identified in a non-targeted fashion by mass-spectrometry. Antibody microarrays permit ultra-sensitive, semi-quantitative measurements of the levels of hundreds of target proteins and their phosphorylation in parallel with specimens from cells and tissues. Conversely, reverse-phase protein microarrays (RPPMs) that are printed with crude cell/tissue lysates allow tracking of a target protein with a probing antibody in hundreds to thousands of cell and tissue samples simultaneously. While more than half a million commercial antibodies are available, the identification of highly specific and potent antibodies for use in microarrays remains a major impediment. Antibody cross-reactivity is an issue for both antibody microarrays and RPPMs. The low abundance of signal transduction proteins and their substoichiometric levels of phosphorylation are also problematic. Finally, non-denaturing conditions used with standard antibody microarrays permit protein complexes, which can produce false positives and false negatives. Changes in the level of an interacting protein may be misinterpreted as alterations in the amount of a target protein or its phosphorylation state. It is critical that leads from both types of microarrays are validated by complementary approaches such as immunoblotting and ELISA. More than a hundred reports have appeared in the scientific literature that have benefited from utilization of antibody and protein lysate microarrays. We have highlighted some of the pioneering works in this field and provided recent examples of their successful deployment as tools for broad-based, targeted proteomics research.  相似文献   

6.
Protein-based microarrays are among the novel class of rapidly emerging proteomic technologies that will allow us to efficiently perform global proteome analysis. However, the process of designing adequate protein microarrays is a major inherent problem. In this study, we have evaluated a protein microarray platform based on nonpurified affinity-tagged single-chain (sc) Fv antibody fragments to generate proof-of-principle and to demonstrate the specificity and sensitivity of the array design. To this end, we used our human recombinant scFv antibody library genetically constructed around one framework, the n-CoDeR library containing 2 x 10(10) clones, as a source for our probes. The probes were immobilized via engineered C-terminal affinity tags, his- or myc-tags, to either Ni(2+)-coated slides or anti-tag antibody coated substrates. The results showed that highly functional microarrays were generated and that nonpurified scFvs readily could be applied as probes. Specific and sensitive microarrays were obtained, providing a limit of detection in the pM to fM range, using fluorescence as the mode of detection. Further, the results showed that spotting the analyte on top of the arrayed probes, instead of incubating the array with large sample volumes (333 pL vs. 40 microL), could reduce the amount of analyte required 4000 times, from 1200 attomole to 300 zeptomole. Finally, we showed that a highly complex proteome, such as human sera containing several thousand different proteins, could be directly fluorescently labeled and successfully analyzed without compromising the specificity and sensitivity of the antibody microarrays. This is a prerequisite for the design of high-density antibody arrays applied in high-throughput proteomics.  相似文献   

7.
Tissue microarrays (TMAs) are an ordered array of tissue cores on a glass slide. They permit immunohistochemical analysis of numerous tissue sections under identical experimental conditions. The arrays can contain samples of every organ in the human body, or a wide variety of common tumors and obscure clinical cases alongside normal controls. The arrays can also contain pellets of cultured tumor cell lines. These arrays may be used like any histological section for immunohistochemistry and in situ hybridization to detect protein and gene expression. This new technology will allow investigators to analyze numerous biomarkers over essentially identical samples, develop novel prognostic markers and validate potential drug targets. The ability to combine TMA technology with DNA microarrays and proteomics makes it a very attractive tool for analysis of gene expression in clinically stratified tumor specimens and relate expression of each particular protein with clinical outcome. Public domain software allows researchers to examine digital images of individual histological specimens from TMAs, evaluate and score them and store the quantitative data in a relational database. TMA technology may be specifically applied to the profiling of proteins of interest in other pathophysiological conditions such as congestive heart failure, renal disease, hypertension, diabetes, cystic fibrosis and neurodegenerative disorders. This review is intended to summarize the strengths and weaknesses of TMA technology which will have an increasingly important role in the laboratories of the post-genomic era.  相似文献   

8.
Antibody-based microarray is a novel proteomic technology setting a new standard for molecular profiling of non-fractionated complex proteomes. The first generation of antibody microarrays has already demonstrated its potential for generating detailed protein expression profiles, or protein atlases, of human body fluids in health and disease, paving the way for new discoveries within the field of disease proteomics. The process of designing highly miniaturized, high-density and high-performing antibody microarray set-ups have, however, proven to be challenging. In this mini-review we discuss key technological issues that must be addressed in a cross-disciplinary manner before true global proteome analysis can be performed using antibody microarrays.  相似文献   

9.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.  相似文献   

10.
Quantitative proteomic methodologies allow profiling of hundreds to thousands of proteins in a high-throughput fashion. This approach is increasingly applied to cancer biomarker discovery to identify proteins that are differentially regulated in cancers. Fractionation of protein samples based on enrichment of cellular subproteomes prior to mass spectrometric analysis can provide increased coverage of certain classes of molecules. We used a membrane protein enrichment strategy coupled with 18O labeling based quantitative proteomics to identify proteins that are highly expressed in cholangiocarcinomas. In addition to identifying several proteins previously known to be overexpressed in cholangiocarcinoma, we discovered a number of molecules that were previously not associated with cholangiocarcinoma. Using immunoblotting and immunohistochemical labeling of tissue microarrays, we validated Golgi membrane protein 1, Annexin IV and Epidermal growth factor receptor pathway substrate 8 (EPS8) as candidate biomarkers for cholangiocarcinomas. Golgi membrane protein 1 was observed to be overexpressed in 89% of cholangiocarcinoma cases analyzed by staining tissue microarrays. In light of recent reports showing that Golgi membrane protein 1 is detectable in serum, further investigation into validation of this protein has the potential to provide a biomarker for early detection of cholangiocarcinomas.  相似文献   

11.
News in Brief     
Protein microarrays are versatile tools for parallel, miniaturized screening of binding events involving large numbers of immobilized proteins in a time- and cost-effective manner. They are increasingly applied for high-throughput protein analyses in many research areas, such as protein interactions, expression profiling and target discovery. While conventionally made by the spotting of purified proteins, recent advances in technology have made it possible to produce protein microarrays through in situ cell-free synthesis directly from corresponding DNA arrays. This article reviews recent developments in the generation of protein microarrays and their applications in proteomics and diagnostics.  相似文献   

12.
13.
Array of informatics: Applications in modern research   总被引:1,自引:0,他引:1  
  相似文献   

14.
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single‐gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high‐throughput proteomics platforms, such as protein microarrays and cell‐based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high‐throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and CreatorTM DNA Cloning System) and compare them side‐by‐side. We also report an example of high‐throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12).  相似文献   

15.
In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.  相似文献   

16.
Protein microarrays represent an emerging technology that promises to facilitate high-throughput proteomics. The major goal of this technology is to employ peptides, full-length proteins, antibodies, and small molecules to simultaneously screen thousands of targets for potential protein–protein interactions or modifications of the proteome. This article describes the performance of a set of peptide aptamers specific for the human papillomavirus (HPV) type 16 oncoproteins E6 and E7 in a microarray format. E6 and E7 peptide aptamer microarrays were probed with fluorescence-labeled lysates generated from HPV-infected cervical keratinocytes expressing both E6 and E7 oncoproteins. Peptide aptamer microarrays are shown to detect low levels of E6 and E7 proteins. Peptide aptamers specific for cellular proteins included on these microarrays suggested that expression of CDK2, CDK4, and BCL-6 may be affected by HPV infection and genome integration. We conclude that peptide aptamer microarrays represent a promising tool for proteomics and may be of value in biological and clinical investigations of cervical carcinogenesis.  相似文献   

17.
艾润娜  赵晓航 《生命科学》2010,(10):985-990
传统的蛋白质芯片制备需要进行繁琐的蛋白质表达与纯化。同时,由于蛋白质活性不稳定,蛋白质芯片不宜长期保存。新一代自组装蛋白质芯片,利用无细胞表达体系和DNA固定技术,能够将蛋白质即时、原位表达并固定在芯片上,有效地解决了传统蛋白质芯片的制备和保存问题。目前自组装蛋白质芯片已初步用于大规模蛋白-蛋白质相互作用的筛选,以及鉴定免疫优势抗原等研究。该文介绍了近年自组装蛋白质芯片技术的进展和应用研究。  相似文献   

18.
A major focus of systems biology is to characterize interactions between cellular components, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flexible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to reconstruct biological networks including protein-DNA interactions, posttranslational protein modifications (PTMs), lectin-glycan recognition, pathogen-host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological systems. We will also discuss emerging applications and future directions of protein microarray technology in the global frontier.  相似文献   

19.
蛋白质组分析是鉴定蛋白质种类和功能的有力工具之一。叶绿体作为光合作用的重要细胞器,叶绿体蛋白质组学成为了研究的热点,涉及的领域包括叶绿体的总蛋白质组学、亚细胞蛋白质组学、差异蛋白质组学和蛋白质的功能等。现主要介绍蛋白质组学的常用技术以及叶绿体蛋白质组学的最新研究进展。  相似文献   

20.
高通量植物蛋白质组学研究方法   总被引:2,自引:0,他引:2  
模式植物拟南芥和水稻的基因组测序,使得大规模、高通量的研究方法在基因组和蛋白质组研究中日趋重要。本文综述双向电泳、质谱、蛋白质微阵列、抗体、酵母双杂交系统以及一些新型高通量方法研究进展及其在植物蛋白质组研究中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号