首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In murine gastrointestinal myocytes muscarinic stimulation activates nonselective cation channels via a G-protein and Ca2+-dependent pathway. We recorded inward cationic currents following application of carbachol (ICCh) to murine gastric myocytes held at -60 mV, using the whole-cell patch-clamp method. The properties of the inward cationic currents were similar to those of the nonselective cation channels activated by muscarinic stimulation in other gastrointestinal smooth muscle cells. CCh-induced ICCh and spontaneous decay of ICCh (desensitization of ICCh) occurred. Unlike the situation in guinea pig gastric myocytes, desensitization was not affected by varying [EGTA]i. Pretreatment with the PLC inhibitor (U73122) blocked the activation of ICCh, and desensitization of ICCh was attenuated in PLC beta1 knock-out mice. These results suggest that the desensitization of ICCh in murine gastric myocytes is not due to a pathway dependent on intracellular Ca2+ but to the PLC beta1 pathway.  相似文献   

2.
In cardiac cells that lack macroscopic transient outward K(+) currents (I(to)), the removal of extracellular Ca(2+) can unmask "I(to)-like" currents. With the use of pig ventricular myocytes and the whole cell patch-clamp technique, we examined the possibility that cation efflux via L-type Ca(2+) channels underlies these currents. Removal of extracellular Ca(2+) and extracellular Mg(2+) induced time-independent currents at all potentials and time-dependent currents at potentials greater than -50 mV. Either K(+) or Cs(+) could carry the time-dependent currents, with reversal potential of +8 mV with internal K(+) and +34 mV with Cs(+). Activation and inactivation were voltage dependent [Boltzmann distributions with potential of half-maximal value (V(1/2)) = -24 mV and slope = -9 mV for activation; V(1/2) = -58 mV and slope = 13 mV for inactivation]. The time-dependent currents were resistant to 4-aminopyridine and to DIDS but blocked by nifedipine at high concentrations (IC(50) = 2 microM) as well as by verapamil and diltiazem. They could be increased by BAY K-8644 or by isoproterenol. We conclude that the I(to)-like currents are due to monovalent cation flow through L-type Ca(2+) channels, which in pig myocytes show low sensitivity to nifedipine.  相似文献   

3.
The action potential in gallbladder smooth muscle (GBSM) is caused by Ca2+ entry through voltage-dependent Ca2+ channels (VDCC), which contributes to the GBSM contractions. Action potential generation in GBSM is critically dependent on the resting membrane potential (about -50 mV), which is approximately 35 mV more positive of the K+ equilibrium potential. We hypothesized that a tonic, depolarizing conductance is present in GBSM and contributes to the regulation of the resting membrane potential and action potential frequency. GBSM cells were isolated from guinea pig gallbladders, and the whole cell patch-camp technique was used to record membrane currents. After eliminating the contribution of VDCC and K+ channels, we identified a novel spontaneously active cation conductance (I(cat)) in GBSM. This I(cat) was mediated predominantly by influx of Na+. Na+ substitution with N-methyl-D-glucamine (NMDG), a large relatively impermeant cation, caused a negative shift in the reversal potential of the ramp current and reduced the amplitude of the inward current at -50 mV by 65%. Membrane potential recordings with intracellular microelectrodes or in current-clamp mode of the patch-clamp technique indicated that the inhibition of I(cat) conductance by NMDG is associated with membrane hyperpolarization and inhibition of action potentials. Extracellular Ca2+, Mg2+, and Gd3+ attenuated the I(cat) in GBSM. Muscarinic stimulation did not activate the I(cat). Our results indicate that, in GBSM, an Na+-permeable channel contributes to the maintenance of the resting membrane potential and action potential generation and therefore plays a critical role in the regulation of GBSM excitability and contractility.  相似文献   

4.
20-Hydroxyeicosatetraenoic acid (20-HETE) controls several mechanisms such as vasoactivity, mitogenicity, and ion transport in various tissues. Our goal was to quantify the effects of 20-HETE on the electrophysiological properties of airway smooth muscle (ASM). Isometric tension measurements, performed on guinea pig ASM, showed that 20-HETE induced a dose-dependent inotropic effect with an EC50 value of 1.5 microM. This inotropic response was insensitive to GF-109203X, a PKC inhibitor. The sustained contraction, requiring Ca2+ entry, was partially blocked by either 100 microM Gd3+ or 1 microM nifedipine, revealing the involvement of noncapacitative Ca2+ entry and L-type Ca2+ channels, respectively. Microelectrode measurements showed that 3 microM 20-HETE depolarized the membrane potential in guinea pig ASM by 13 +/- 2mV(n = 7), as did 30 microM 1-oleoyl-2-acetyl-sn-glycerol. Depolarizing effects were also observed in the absence of epithelium. Patch-clamp recordings demonstrated that 1 microM 20-HETE activated a nonselective cationic inward current that may be supported by the activation of transient receptor potential channels. The presence of canonical transient receptor potential mRNA was confirmed by RT-PCR in guinea pig ASM cells.  相似文献   

5.
Airway smooth muscle (ASM) cells express voltage-dependent Ca2+ channels, primarily of the L-subtype. These may play a role in excitation-contraction coupling of ASM, although other signaling pathways may also contribute: one of these includes Rho and its downstream effector molecule Rho-associated kinase (ROCK). Although voltage-dependent Ca2+ influx and Rho/ROCK signaling have traditionally been viewed as entirely separate pathways, recent evidence in vascular smooth muscle suggest differently. In this study, we monitored contractile activity (muscle baths) in bronchial and/or tracheal preparations from the pig, cow, and human, and further examined Rho and ROCK activities (Western blots and kinase assays) and cytosolic levels of Ca2+ (fluo 4-based fluorimetry) in porcine tracheal myocytes. KCl evoked substantial contractions that were suppressed in tracheal preparations by removal of external Ca2+ or using the selective L-type Ca2+ channel blocker nifedipine; porcine bronchial preparations were much less sensitive, and bovine bronchi were essentially unaffected by 1 microM nifedipine. Surprisingly, KCl-evoked contractions were also highly sensitive to two structurally different ROCK inhibitors: Y-27632 and HA-1077. Furthermore, the inhibitory effects of nifedipine and of the ROCK inhibitors were not additive. KCl also caused marked stimulation of Rho and ROCK activities, and both these changes were suppressed by nifedipine or by removal of external Ca2+. KCl-induced elevation of [Ca2+]i was not affected by Y-27632 but was reversed by NiCl2 or by BAPTA-AM. We conclude that KCl acts in part through stimulation of Rho and ROCK, possibly secondary to voltage-dependent Ca2+ influx.  相似文献   

6.
The presence and properties of voltage-gated Na+ channels in mesenteric artery smooth muscle cells (SMCs) were studied using whole cell patch-clamp recording. SMCs from mouse and rat mesenteric arteries were enzymatically dissociated using two dissociation protocols with different enzyme combinations. Na+ and Ca2+ channel currents were present in myocytes isolated with collagenase and elastase. In contrast, Na+ currents were not detected, but Ca2+ currents were present in cells isolated with papain and collagenase. Ca2+ currents were blocked by nifedipine. The Na+ current was insensitive to nifedipine, sensitive to changes in the extracellular Na+ concentration, and blocked by tetrodotoxin with an IC50 at 4.3 nM. The Na+ conductance was half maximally activated at -16 mV, and steady-state inactivation was half-maximal at -53 mV. These values are similar to those reported in various SMC types. In the presence of 1 microM batrachotoxin, the Na+ conductance-voltage relationship was shifted by 27 mV in the hyperpolarizing direction, inactivation was almost completely eliminated, and the deactivation rate was decreased. The present study indicates that TTX-sensitive, voltage-gated Na+ channels are present in SMCs from the rat and mouse mesenteric artery. The presence of these channels in freshly isolated SMC depends critically on the enzymatic dissociation conditions. This could resolve controversy about the presence of Na+ channels in arterial smooth muscle.  相似文献   

7.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

8.
Elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells is proposed to be required for generation of vascular actions of endothelium-derived hyperpolarizing factor (EDHF). This study was designed to determine the endothelial Ca(2+) source that is important in development of EDHF-mediated vascular actions. In porcine coronary artery precontracted with U-46619, bradykinin (BK) and cyclopiazonic acid (CPA) caused endothelium-dependent relaxations in the presence of N(G)-nitro-L-arginine (L-NNA). The L-NNA-resistant relaxant responses were inhibited by high K(+), indicating an involvement of EDHF. In the presence of Ni(2+), which inhibits Ca(2+) influx through nonselective cation channels, the BK-induced EDHF relaxant response was greatly diminished and the CPA-induced response was abolished. BK and CPA elicited membrane hyperpolarization of smooth muscle cells of porcine coronary artery. Ni(2+) suppressed the hyperpolarizing responses in a manner analogous to removal of extracellular Ca(2+). EDHF-mediated relaxations and hyperpolarizations evoked by BK and CPA in porcine coronary artery showed a temporal correlation with the increases in [Ca(2+)](i) in porcine aortic endothelial cells. The extracellular Ca(2+)-dependent rises in [Ca(2+)](i) in endothelial cells stimulated with BK and CPA were completely blocked by Ni(2+). These results suggest that Ca(2+) influx into endothelial cells through nonselective cation channels plays a crucial role in the regulation of EDHF.  相似文献   

9.
The electrophysiological and pharmacological properties of Ca(2+) current (I(Ca)) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca(2+), depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I(Ca) which activated at membrane potentials more positive than -50 mV and exhibited a maximum current density in a range of 10-20 mV. Steady-state inactivation protocols using a V(test) of 10 mV gave a voltage at one-half inactivation and a slope factor of -35.6 mV and 9.5 mV, respectively. Nifedipine (1 microM), an L-type Ca(2+) channels antagonist, completely inhibited I(Ca), while the L-type Ca(2+) channels agonist Bay-K 8644 (1 microM) significantly increased I(Ca) amplitude. Moreover, the selective blocker of P-/Q-type Ca(2+) channels omega-agatoxin IVA partially blocked I(Ca) (about 40 % inhibition at +20 mV by 20 nM). These pharmacological results suggest that L- and P-/Q-type Ca(2+) channels, both nifedipine-sensitive, underlie the I(Ca) registered using low extracellular Ca(2+). The presence of the P-/Q-type Ca(2+) channels was confirmed by immunoblot analysis. When I(Ca) was recorded in a high concentration (30 mM) of extracellular Ca(2+) or Ba(2+) as current carrier, it was evident the presence of a nifedipine-insensitive component which completely inactivated during the course of the voltage-step (75 ms) at all potentials tested, and was blocked by the T-type Ca(2+) channels blocker mibefradil (10 microM). Summarizing, this work shows for the first time the electrophysiological and pharmacological properties of voltage-activated Ca(2+) currents in human umbilical artery smooth muscle cells.  相似文献   

10.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

11.
The ionic conductances that underlie the resting membrane potential of visceral smooth muscle are not fully understood. Using the patch-clamp technique in the whole-cell configuration, single large conductance channels (LCCs) with unitary conductances of up to 400 pS were recorded in isolated smooth muscle cells of the opossum esophagus. These channels were active at physiological potentials (-100 to -40 mV) and opened with increasing frequency as the membrane potential was hyperpolarized. This voltage dependence gave rise to an inwardly rectifying macroscopic current which was half-maximally activated at -65 mV. The current through LCCs was carried by cations because reduction of external [NaCl] shifted the reversal potential of the LCC current towards the predicted Nernst potential for a nonselective cation current. These results suggest that LCCs may contribute to resting membrane potential in the circular muscle of the opossum esophagus.  相似文献   

12.
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.  相似文献   

13.
Na(+) reduction induces contraction of opossum lower esophageal sphincter (LES) circular smooth muscle strips in vitro; however, the mechanism(s) by which this occurs is unknown. The purpose of the present study was to investigate the electrophysiological effects of low Na(+) on opossum LES circular smooth muscle. In the presence of atropine, quanethidine, nifedipine, and substance P, conventional intracellular electrodes recorded a resting membrane potential (RMP) of -37.5 +/- 0.9 mV (n = 4). Decreasing [Na(+)] from 144.1 to 26.1 mM by substitution of equimolar NaCl with choline Cl depolarized the RMP by 7.1 +/- 1.1 mV. Whole cell patch-clamp recordings revealed outward K(+) currents that began to activate at -60 mV using 400-ms stepped test pulses (-120 to +100 mV) with increments of 20 mV from holding potential of -80 mV. Reduction of [Na(+)] in the bath solution inhibited K(+) currents in a concentration-dependent manner. Single channels with conductance of 49-60 pS were recorded using cell-attached patch-clamp configurations. The channel open probability was significantly decreased by substitution of bath Na(+) with equimolar choline. A 10-fold increase of [K(+)] in the pipette shifted the reversal potential of the single channels to the positive by -50 mV. These data suggest that Na(+)-activated K(+) channels exist in the circular smooth muscle of the opossum LES.  相似文献   

14.
Excitation of human esophageal smooth muscle involves the release of Ca(2+) from intracellular stores and influx. The lower esophageal sphincter (LES) shows the distinctive property of tonic contraction; however, the mechanisms by which this is maintained are incompletely understood. We examined Ca(2+) channels in human esophageal muscle and investigated their contribution to LES tone. Functional effects were examined with tension recordings, currents were recorded with patch-clamp electrophysiology, channel expression was explored by RT-PCR, and intracellular Ca(2+) concentration was monitored by fura-2 fluorescence. LES muscle strips developed tone that was abolished by the removal of extracellular Ca(2+) and reduced by the application of the L-type Ca(2+) channel blocker nifedipine (to 13 +/- 6% of control) but was unaffected by the inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase by cyclopiazonic acid (CPA). Carbachol increased tension above basal tone, and this effect was attenuated by treatment with CPA and nifedipine. Voltage-dependent inward currents were studied using patch-clamp techniques and dissociated cells. Similar inward currents were observed in esophageal body (EB) and LES smooth muscle cells. The inward currents in both tissues were blocked by nifedipine, enhanced by Bay K8644, and transiently suppressed by acetylcholine. The molecular form of the Ca(2+) channel was explored using RT-PCR, and similar splice variant combinations of the pore-forming alpha(1C)-subunit were identified in EB and LES. This is the first characterization of Ca(2+) channels in human esophageal smooth muscle, and we establish that L-type Ca(2+) channels play a critical role in maintaining LES tone.  相似文献   

15.
Albert AP  Large WA 《Cell calcium》2003,33(5-6):345-356
Over twenty years ago it was shown that depletion of the intracellular Ca2+ store in smooth muscle triggered a Ca2+ influx mechanism. The purpose of this review it to describe recent electrophysiological data which indicate that Ca2+ influx occurs through discrete ion channels in the plasmalemma of smooth muscle cells. The effect of external Ca2+ on the amplitude and reversal potential of whole-cell and single channel currents suggests that there are at least two, and probably more, distinct store-operated channels (SOCs) which have markedly different permeabilities to Ca2+ ions. Two activation mechanisms have been identified which involve Ca2+ influx factor and protein kinase C (PKC) activation via diacylglycerol. In addition, in rabbit portal vein cells there is evidence that stimulation of alpha-adrenoceptors can stimulate SOC opening via PKC in a store-independent manner. There is at present little knowledge on the molecular identity of SOCs but it has been proposed that TRPC1 may be a component of the functional channel. We also summarise the data showing that SOCs may be involved in contraction and cell proliferation of smooth muscle. Finally, we highlight the similarities and differences of SOCs and receptor-operated cation channels that are present in native rabbit portal vein myocytes.  相似文献   

16.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

17.
Y M Bae  K S Kim  J K Park  E Ko  S Y Ryu  H J Baek  S H Lee  W K Ho  Y E Earm 《Life sciences》2001,69(21):2451-2466
The membrane potential in vascular smooth muscle cells contributes to the regulation of cytosolic [Ca2+], which in turn regulates membrane potential by means of Ca2+i-dependent ionic currents. We investigated the characteristics of Ca2+i-dependent currents in rabbit coronary and pulmonary arterial smooth muscle cells. Ca2+i-dependent currents were recorded using the whole-cell patch-clamp technique while cytosolic [Ca2+] was increased by caffeine. The reversal potentials of caffeine-induced currents were between -80 and -10 mV under normal ionic conditions, whereas they were about 0 mV when K+-free NaCl solutions were used both in pipette and bath. The total substitution of extracellular Na+ with membrane-impermeable cation N-Methyl-D-glucamine did not affect caffeine-induced currents, implying no significant contribution of Na+ as a permeant ion to the currents. The substitution of extracellular NaCl with sucrose reduced outward component of the currents and shifted the reversal potentials according to the change in Cl- equilibrium potential. Upon application of the niflumic acid under K+-free conditions, most of the current induced by caffeine was inhibited. Taken together, the results of the present study indicate that K+ and Cl- currents are major components of Ca2+i-dependent currents in vascular smooth muscles isolated from coronary and pulmonary arteries of the rabbit, and the relative contribution of each type of current to total currents are not different between the two arteries.  相似文献   

18.
Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.  相似文献   

19.
Intracellular recordings were taken from the smooth muscle of the guinea pig trachea, and the effects of intrinsic nerve stimulation were examined. Approximately 50% of the cells had stable resting membrane potentials of -50 +/- 1 mV. The remaining cells displayed spontaneous oscillations in membrane potential, which were abolished either by blocking voltage-dependent Ca(2+) channels with nifedipine or by depleting intracellular Ca(2+) stores with ryanodine. In quiescent cells, stimulation with a single impulse evoked an excitatory junction potential (EJP). In 30% of these cells, trains of stimuli evoked an EJP that was followed by oscillations in membrane potential. Transmural nerve stimulation caused an increase in the frequency of spontaneous oscillations. All responses were abolished by the muscarinic-receptor antagonist hyoscine (1 microM). In quiescent cells, nifedipine (1 microM) reduced EJPs by 30%, whereas ryanodine (10 microM) reduced EJPs by 93%. These results suggest that both the release of Ca(2+) from intracellular stores and the influx of Ca(2+) through voltage-dependent Ca(2+) channels are important determinants of spontaneous and nerve-evoked electrical activity of guinea pig tracheal smooth muscle.  相似文献   

20.
The patch-clamp technique was applied to the antiluminal membrane of freshly isolated capillaries of rat brain (blood-brain barrier). With 1.3 mM Ca2+ in the bath, excision of membrane patches evoked ion channels, which could not be observed in cell-attached mode. The channel was about equally permeable to Na+ and K+ ions, but not measurable permeable to Cl- and the divalent ions Ca2+ and Ba2+. The current-voltage curve was linear in the investigated voltage range (-80 mV to +80 mV), and the single-channel conductance was 31 +/- 2 pS (n = 22). The channel open probability was not dependent on the applied potential. Lowering of Ca2+ to 1 microM or below on the cytosolic side inactivated the channels, whereas addition of cytosolic ATP (1 mM) inhibited channel activity completely and reversibly. The channel was blocked by the inhibitor of nonselective cation channels in rat exocrine pancreas 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC, 10 microM) and by the antiinflammatory drugs flufenamic acid (greater than 10 microM) and tenidap (100 microM), as well as by gadolinium (10 microM). Thus, these nonselective cation channels have many properties in common with similar channels observed in fluid secreting epithelia. The channel could be involved in the transport of K+ ions from brain to blood side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号