首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). Three forms of methylarginine have been identified in eukaryotes: monomethylarginine (l-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA), all characterized by methylation of one or both guanidine nitrogen atoms of arginine. l-NMMA and ADMA, but not SDMA, are competitive inhibitors of all nitric oxide synthase isoforms. SDMA is eliminated almost entirely by renal excretion, whereas l-NMMA and ADMA are further metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To explore the interplay between methylarginine synthesis and degradation in vivo, we determined PRMT expression and DDAH activity in mouse lung, heart, liver, and kidney homogenates. In addition, we employed HPLC-based quantification of protein-incorporated and free methylarginine, combined with immunoblotting for the assessment of tissue-specific patterns of arginine methylation. The salient findings of the present investigation can be summarized as follows: 1) pulmonary expression of type I PRMTs was correlated with enhanced protein arginine methylation; 2) pulmonary ADMA degradation was undertaken by DDAH1; 3) bronchoalveolar lavage fluid and serum exhibited almost identical ADMA/SDMA ratios, and 4) kidney and liver provide complementary routes for clearance and metabolic conversion of circulating ADMA. Together, these observations suggest that methylarginine metabolism by the pulmonary system significantly contributes to circulating ADMA and SDMA levels.  相似文献   

2.
3.
We have identified a protein, FLJ12673 or FBXO11, that contains domains characteristically present in protein arginine methyltransferases (PRMTs). Immuno-purified protein expressed from one of the four splice variants in HeLa cells and in Escherichia coli exhibited methyltransferase activity. Monomethylarginine, symmetric, and asymmetric dimethylarginine (SDMA, ADMA) were formed on arginine residues. Accordingly, we have designated the protein PRMT9. PRMT9 is the third member of the PRMT family that forms SDMA modifications in proteins. Structurally, this protein is distinct from all other known PRMTs implying that convergent evolution allowed this protein to develop the ability to methylate arginine residues and evolved elements conserved in PRMTs to accomplish this.  相似文献   

4.
Protein arginine methyltransferases (PRMTs) catalyze the post-translational methylation of specific arginyl groups within targeted proteins to regulate fundamental biological responses in eukaryotic cells. The major Type I PRMT enzyme, PRMT1, strictly generates monomethyl arginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA). Multiple diseases can arise from the dysregulation of PRMT1, including heart disease and cancer, which underscores the need to elucidate the origin of product specificity. Molecular dynamics (MD) simulations were carried out for WT PRMT1 and its M48F, H293A, H293S, and H293S-M48F mutants bound with S-adenosylmethionine (AdoMet) and the arginine substrate in an unmethylated or methylated form. Experimental site-directed mutagenesis and analysis of the resultant products were also performed. Two specific PRMT1 active site residues, Met48 and His293, have been determined to play a key role in dictating product specificity, as: (1) the single mutation of Met48 to Phe enabled PRMT1 to generate MMA, ADMA, and a limited amount of SDMA; (2) the single mutation of His293 to Ser formed the expected MMA and ADMA products only; whereas (3) the double mutant H293S-M48F-PRMT1 produced SMDA as the major product with limited amounts of MMA and ADMA. Calculating the formation of near-attack conformers resembling SN2 transition states leading to either the ADMA or SDMA products finds that Met48 and His293 may enable WT PRMT1 to yield ADMA exclusively by precluding MMA from binding in an orientation more conducive to SDMA formation, i.e., the methyl group bound at the arginine Nη2 position.  相似文献   

5.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), may be related to reduced biosynthesis of nitric oxide in diseases associated with accelerated atherosclerosis. The closely related compound symmetric dimethylarginine (SDMA) does not inhibit NOS, but may compete with arginine for cellular uptake, thereby limiting substrate availability for NOS. We report on a method for the simultaneous measurement of arginine, ADMA, and SDMA as a tool to gain insight in the role of these compounds in the regulation of NOS activity. Sample cleanup was performed by solid-phase extraction on polymeric cation-exchange columns using monomethylarginine as internal standard. After derivatization with ortho-phthaldialdehyde reagent containing 3-mercaptopropionic acid, analytes were separated by isocratic reversed-phase HPLC with fluorescence detection. The stable derivatives were separated with near baseline resolution. Using a sample volume of 0.2 ml, linear calibration curves were obtained with limits of quantification of 0.08 microM for arginine and 0.01 microM for ADMA and SDMA. Analytical recovery was 98-102%, and interassay CV was better than 3%. Plasma from healthy volunteers (n = 53) contained 94 +/- 26 microM arginine, 0.42 +/- 0.06 microM ADMA, and 0.47 +/- 0.08 microM SDMA. Due to its high precision and sensitivity this method is a valuable tool in research on the metabolism of dimethylated arginines and their role in the regulation of NOS activity.  相似文献   

6.
Post-translational methylation of arginine residues in proteins leads to generation of N(G)-monomethylarginine (MMA) and both symmetric and asymmetric dimethylarginine (SDMA and ADMA), that are released into the cytosol upon proteolysis. Both MMA and ADMA are inhibitors of nitric oxide synthase and especially elevated levels of ADMA are associated with endothelial dysfunction and cardiovascular disease. Plasma concentrations of ADMA and SDMA are very low, typically between 0.3 and 0.8 microM, making their quantification by HPLC an analytical challenge. Sample preparation usually involves a cleanup step by solid-phase extraction on cation-exchange columns followed by derivatization of amino acids into fluorescent adducts. Because ADMA and SDMA concentrations in healthy subjects show a very narrow distribution, with a between-subject variability of 13% for ADMA and 19% for SDMA, very low imprecision is an essential assay feature. Procedures for sample cleanup, derivatization, and chromatographic separation of arginine and its methylated analogs are the main topics of this review. In addition, important aspects of method validation, pre-analytical factors, and reference values are discussed.  相似文献   

7.
Methyltransferases use S-adenosylmethionine (AdoMet) as methyl group donor, forming S-adenosylhomocysteine (AdoHcy) and methylated substrates, including DNA and proteins. AdoHcy inhibits most methyltransferases. Accumulation of intracellular AdoHcy secondary to Hcy elevation elicits global DNA hypomethylation. We aimed at determining the extent at which protein arginine methylation status is affected by accumulation of intracellular AdoHcy. AdoHcy accumulation in human umbilical vein endothelial cells was induced by inhibition of AdoHcy hydrolase by adenosine-2,3-dialdehyde (AdOx). As a measure of protein arginine methylation status, the levels of monomethylarginine (MMA) and asymmetric and symmetric dimethylated arginine residues (ADMA and SDMA, respectively) in cell protein hydrolysates were measured by HPLC. A 10% decrease was observed at a 2.5-fold increase of intracellular AdoHcy. Western blotting revealed that the translational levels of the main enzymes catalyzing protein arginine methylation, protein arginine methyl transferases (PRMTs) 1 and 5, were not affected by AdoHcy accumulation. Global DNA methylation status was evaluated by measuring 5-methylcytosine and total cytosine concentrations in DNA hydrolysates by LC-MS/MS. DNA methylation decreased by 10% only when intracellular AdoHcy concentration accumulated to 6-fold of its basal value. In conclusion, our results indicate that protein arginine methylation is more sensitive to AdoHcy accumulation than DNA methylation, pinpointing a possible new player in methylation-related pathology.  相似文献   

8.
There is increasing recognition of the clinical importance of endogenous nitric oxide synthase inhibitors in critical illness. This has highlighted the need for an accurate high performance liquid chromatography (HPLC) method for detection of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in small volumes of blood. Here, the validation of an accurate, precise HPLC method for the determination of ADMA, SDMA, homoarginine and arginine concentrations in plasma is described. Solid phase extraction is followed by derivatisation with AccQ-Fluor™ and reversed phase separation on a Gemini-NX column at pH 9. Simultaneous detection by both UV–vis and fluorescence detectors affords extra validation. This solid phase extraction method gives absolute recoveries of more than 85% for ADMA and SDMA and relative recoveries of 102% for ADMA and 101% for SDMA. The intra-assay relative standard deviations are 2.1% and 2.3% for ADMA and SDMA, respectively, with inter-assay relative standard deviations of 2.7% and 3.1%, respectively. Advantages of this method include improved recovery of all analytes using isopropanol in the solid phase extraction; sharp, well-resolved chromatographic peaks using a high pH mobile phase; a non-endogenous internal standard, n-propyl l-arginine; and accurate and precise determination of methylated arginine concentrations from only 100 μL of plasma.  相似文献   

9.
Accumulation of S-adenosylhomocysteine (AdoHcy), the homocysteine (Hcy) precursor and a potent methyltransferase inhibitor, may mediate the neurological and vascular complications associated with elevated Hcy. Protein arginine methylation is a crucial post-translational modification and generates monomethylarginine (MMA) and dimethylarginine (asymmetric, ADMA, and symmetric, SDMA) residues. We aimed at determining whether protein arginine methylation status is disturbed in an animal model of diet-induced hyperhomocysteinemia (HHcy). HHcy was achieved by dietary manipulation of Wistar rats: methionine-enrichment (HM), B vitamins deficiency (LV), or both (HMLV). Total Hcy, S-adenosylmethionine (AdoMet), AdoHcy, MMA, ADMA and SDMA concentrations in plasma or tissues (heart, brain and liver) were determined by adequate high-performance liquid chromatography or liquid chromatography-electrospray ionization-tandem mass spectrometry methods. Moreover, in tissues from the HMLV group, histone arginine asymmetric dimethylation was evaluated by Western blotting, and the histone methylation marks H3R17me2a, H3R8me2a and H4R3me2a were studied. HHcy was induced by all special diets, with elevation of AdoHcy concentrations in liver (LV and HMLV) and heart (HMLV) (all versus control). Plasma ADMA levels were lower in all hyperhomocysteinemic animals. Protein-incorporated ADMA levels were decreased in brain and in heart (both for the LV and HMLV groups). Moreover, in brain of animals exposed to the HMLV diet, the H3R8me2a mark was profoundly decreased. In conclusion, our results show that diet-induced Hcy elevation disturbs global protein arginine methylation in a tissue-specific manner and affects histone arginine methylation in brain. Future research is warranted to disclose the functional implications of the global protein and histone arginine hypomethylation triggered by Hcy elevation.  相似文献   

10.
Asymmetric dimethylarginine (ADMA) is an emerging cardiovascular risk factor. Its increased levels have been hypothesized to be a cause of endothelial dysfunction in pathological conditions such as hypertension, dyslipidemia, renal failure, hyperglycemia, and hyperhomocysteinemia. It acts as a potent competitive inhibitor of nitric oxide synthase. Methods using ortho-phthaldialdehyde (OPA) as derivatization reagent are widely performed in HPLC determination of ADMA, but they produce derivatives whose fluorescence rapidly decreases during time. Moreover, these methods do not allow a clear separation of ADMA from its stereoisomer symmetric dimethylarginine (SDMA). Our work describes a new method to determine ADMA, SDMA, and arginine that uses, as derivatizing reagent, naphthalene-2,3-dicarboxaldehyde (NDA). Chromatograms with low background, showing a complete separation of ADMA and SDMA, are obtained. NDA derivatives are considerably more stable than the OPA derivatives. The calibration curves of ADMA and SDMA are linear within the range of 0.01-16.0 microM. Coefficients of variation are less than 1.7% for within day and less then 2.3% for day to day. Absolute mean recoveries from supplemented samples are between 100 and 104%. These characteristics make this method reliable and easily manageable for large routine analyses.  相似文献   

11.
L-Arginine (Arg) and its methylated metabolites play a major role in the synthesis of the cell signaling molecule nitric oxide (NO). Arg serves as a substrate for the enzyme NO synthase (NOS), which produces NO, whereas monomethylarginine (L-NMMA) and asymmetric dimethylarginine (ADMA) act as competitive inhibitors of NOS. Symmetric dimethylarginine (SDMA) has virtually no inhibitory effect on NOS activity, but shares the pathway for cell entry and transport with Arg and ADMA. Accurate and reliable quantification of these substances in various biological fluids is essential for scientific research in this field. In this review, chromatographic-mass spectrometric methods for Arg and its methylated metabolites ADMA and SDMA are discussed. Mass spectrometric detection provides an intrinsic higher selectivity than detection by means of UV absorbance or fluorescence. Taking advantage of the high selectivity, approaches involving mass spectrometric detection require less laborious sample preparation and produce reliable results. A consensus emerges that the concentration values in plasma of young healthy volunteers are about 65 microM for Arg, 0.4 microM for ADMA and 0.5 microM for SDMA.  相似文献   

12.
The balance between nitric oxide (NO) and vasoconstrictors like endothelin is essential for vascular tone and endothelial function. L-Arginine is converted to NO and L-citrulline by NO synthase (NOS). Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are endogenous inhibitors of NO formation. ADMA is degraded by dimethylamino dimethylhydrolases (DDAHs), while SDMA is exclusively eliminated by the kidney. In the present article we report a LC-tandem MS method for the simultaneous determination of arginine, ADMA, and SDMA in plasma. This method is designed for high sample throughput of only 20-mul aliquots of human or mouse plasma. The analysis time is reduced to 1.6 min by LC-tandem MS electrospray ionisation (ESI) in the positive mode. The mean plasma levels of l-arginine, ADMA, and SDMA were 74+/-19 (SD), 0.46+/-0.09, and 0.37+/-0.07 microM in healthy humans (n=85), respectively, and 44+/-14, 0.72+/-0.23, and 0.19+/-0.06 microM in C57BL/6 mice. Also, the molar ratios of arginine to ADMA were different in man and mice, i.e. 166+/-50 and 85+/-22, respectively.  相似文献   

13.
Elevated levels of asymmetric dimethylarginine (ADMA) correlate with risk factors for cardiovascular disease. ADMA is generated by the catabolism of proteins methylated on arginine residues by protein arginine methyltransferases (PRMTs) and is degraded by dimethylarginine dimethylaminohydrolase. Reports have shown that dimethylarginine dimethylaminohydrolase activity is down-regulated and PRMT1 protein expression is up-regulated under oxidative stress conditions, leading many to conclude that ADMA accumulation occurs via increased synthesis by PRMTs and decreased degradation. However, we now report that the methyltransferase activity of PRMT1, the major PRMT isoform in humans, is impaired under oxidative conditions. Oxidized PRMT1 displays decreased activity, which can be rescued by reduction. This oxidation event involves one or more cysteine residues that become oxidized to sulfenic acid (-SOH). We demonstrate a hydrogen peroxide concentration-dependent inhibition of PRMT1 activity that is readily reversed under physiological H2O2 concentrations. Our results challenge the unilateral view that increased PRMT1 expression necessarily results in increased ADMA synthesis and demonstrate that enzymatic activity can be regulated in a redox-sensitive manner.  相似文献   

14.
Arginine methylation is a common posttranslational modification (PTM) that alters roughly 0.5% of all arginine residues in the cells. There are three types of arginine methylation: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). These three PTMs are enriched on RNA-binding proteins and on histones, and also impact signal transduction cascades. To date, over thirty arginine methylation sites have been cataloged on the different core histones. These modifications alter protein structure, impact interactions with DNA, and also generate docking sites for effector molecules. The primary “readers” of methylarginine marks are Tudor domain-containing proteins. The complete family of thirty-six Tudor domain-containing proteins has yet to be fully characterized, but at least ten bind methyllysine motifs and eight bind methylarginine motifs. In this review, we will highlight the biological roles of the Tudor domains that interact with arginine methylated motifs, and also address other types of interactions that are regulated by these particular PTMs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.  相似文献   

15.
N(G), N(G)-Dimethyl-L-arginine (asymmetric dimethylarginine: ADMA) is an endogenous competitive inhibitor of nitric oxide synthase (NOS). Plasma ADMA concentrations have been reported to increase in connection with diseases associated with an impaired endothelial L-arginine/NO pathway. In this study, we investigated the metabolism of ADMA in circulating blood cell populations to elucidate the regulatory mechanism of elevation of plasma ADMA, a novel risk factor for cardiovascular disease. We found by RT-PCR and Western blot analyses that protein arginine methyltransferase (PRMT)1 and dimethylarginine dimethylaminohydrolase (DDAH)-1, responsible for the biosynthesis and degradation of ADMA respectively, are expressed in erythrocytes (ECs), leukocytes, and platelets. We also identified a major ADMA-containing protein in ECs as catalase, confirmed by GST-pull down assay to bind to PRMT1 in vitro. This is the first report that the ADMA-metabolizing system, including the arginine methylation of proteins and the breakdown of free ADMA, occurs in circulating blood cell-populations, and that catalase in ECs might be a potential protein targeted by PRMT1.  相似文献   

16.
Obianyo O  Osborne TC  Thompson PR 《Biochemistry》2008,47(39):10420-10427
Protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and dimethylation of peptidyl arginine residues. Although all PRMTs produce monomethyl arginine (MMA), type 1 PRMTs go on to form asymmetrically dimethylated arginine (ADMA), while type 2 enzymes form symmetrically dimethylated arginine (SDMA). PRMT1 is the major type 1 PRMT in vivo, thus it is the primary producer of the competitive NOS inhibitor, ADMA. Hence, potent inhibitors, which are highly selective for this particular isozyme, could serve as excellent therapeutics for heart disease. However, the design of such inhibitors is impeded by a lack of information regarding this enzyme's kinetic and catalytic mechanisms. Herein we report an analysis of the kinetic mechanism of human PRMT1 using both an unmethylated and a monomethylated substrate peptide based on the N-terminus of histone H4. The results of initial velocity and product and dead-end inhibition experiments indicate that PRMT1 utilizes a rapid equilibrium random mechanism with the formation of dead-end EAP and EBQ complexes. This mechanism is gratifyingly consistent with previous results demonstrating that PRMT1 catalyzes substrate dimethylation in a partially processive manner.  相似文献   

17.
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.  相似文献   

18.
《Biomarkers》2013,18(4):357-364
Abstract

Objectives: To determine whether inflammation (C-reactive protein, CRP), oxidative stress (malondialdehyde, MDA) or haemodialysis (HD) affect associations between asymmetric (ADMA), symmetric (SDMA) dimethylarginine, NG-monomethyl-L-arginine (L-NMMA) and nitrite/nitrate (NOx) in end-stage renal disease (ESRD).

Method: Metabolites were measured pre-HD, after 1 hour and end-HD in 40 ESRD patients (age 63?±?14 years).

Results: Positive associations between NOx and ADMA (p?=?0.04), SDMA (p?<?0.001) and L-NMMA (p?=?0.04) were observed pre-HD. Associations weakened during HD but were not significantly influenced by CRP or MDA.

Conclusions: HD, oxidative stress or inflammation did not significantly affect the positive associations between methylated arginines and NOx in ESRD.  相似文献   

19.
Previously, we demonstrated the utility of a gas chromatography–tandem mass spectrometry (GC–MS/MS) method for the quantitative determination of asymmetric dimethylarginine (ADMA) in biological samples. Here we report the extension of this method to symmetric dimethylarginine (SDMA) in human urine. SDMA and ADMA were simultaneously quantitated in urine by using their in situ prepared trideuteromethyl esters as internal standards. The GC–MS/MS method was validated for SDMA and ADMA in spot urine samples of 19 healthy adults. In these samples, the creatinine-corrected excretion rate was 3.23 ± 0.63 μmol/mmol for SDMA and 3.14 ± 0.98 μmol/mmol for ADMA.  相似文献   

20.
The performance of a new ELISA assay kit (DLD Diagnostika GmbH, Hamburg, Germany) for the determination of asymmetric dimethylarginine (ADMA) was evaluated against a reversed phase HPLC method. ADMA concentrations of 55 serum samples were measured with both methods. The intra-assay CV for ADMA-ELISA was 19% (n=10). Inter-assay CVs for ADMA-ELISA were 9% for kit control 1 (0.410+/-0.037 microM) and 14% for kit control 2 (1.174+/-0.165 microM). The intra- and inter-assay CVs for HPLC assay for ADMA were 2.5% (0.586+/-0.015 microM) and 4.2% (0.664+/-0.028 microM), respectively. There was no correlation between these two methods (R(2)=0.0972). The effect of storage conditions of the samples on ADMA concentrations was investigated by HPLC. ADMA concentration was stable after four freezing and thawing cycles. Overall, the HPLC method offered better sensitivity, selectivity and, very importantly, simultaneous determination of ADMA, SDMA, l-homoarginine and l-arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号