首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allosteric regulation of phenylalanine hydroxylase   总被引:1,自引:0,他引:1  
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.  相似文献   

2.
3.
The kinetic properties of platelet actomyosin have been examined to understand the mode of hydrolysis of its substrate ATP. In the presence of divalent cations, ATP hydrolysis deviated from Michaelis-Menten kinetics in such a way as to indicate cooperative effects, with a sigmoidal velocity vs. substrate curve and a Hill slope of 2.4. In the absence of added divalent cations, linear Michaelis-Menten kinetics were obtained and the Hill slope reduced to 1.0. These results indicate an allosteric regulatory site on platelet actomyosin.  相似文献   

4.
5.
  1. Download : Download high-res image (84KB)
  2. Download : Download full-size image
  相似文献   

6.
Study of the interactions of homogenous human ceruloplasmin preparations with histamine show that the rate of p-phenylene diamine oxidation by ceruloplasmin is increased in the presence of histamine; the increase in the enzyme activity is independent of histamine concentration. The dependence of the reaction rate on substrate concentration is S-shaped, both in the presence and in the absence of histamine. The respective values of the Hill coefficient and Rs for the enzyme in the presence and in the absence of histamine are 2.5 and 2.0 and 8.0 and 10.4. Histamine does not change ceruloplasmin-specific absorption at 610 nm. Evidence from EPR studies show that histamine does not interact with Cu of the enzyme active center. During interaction with histamine the antigenic properties of the enzyme are changed. Histamine increases the oxidase activity of the enzyme in human and rat blood sera and exerts multifold effects on the enzyme activity in patients with hepatolenticular degeneration. After injection of histamine to rats the enzyme activity is increased without a simultaneous increase in Cu concentration in the blood serum, i.e. without de novo synthesis of ceruloplasmin. The data obtained suggest that ceruloplasmin is probably an allosteric enzyme, which histamine is its positive allosteric effector.  相似文献   

7.
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)‐based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite‐mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases.  相似文献   

8.
9.
10.
11.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

12.
Serine racemase, purified from mouse brain, consisted of two isoforms. They had similar enzymatic properties and had molecular weights of about 55 kDa based on size exclusion chromatography. This is about twice that reported from its electrophoretic mobility on SDS gels or from the amino acid sequence of the recombinant enzyme. In addition to the previously reported requirements for pyridoxal phosphate and reducing agents, we found that both forms of the enzyme required Mg2+ and were strongly stimulated by yeast extract. The yeast extract could be replaced by ATP, GTP, or ADP and, to a lesser extent, by other nucleotides. In the presence of 1 mM ATP, the Km for l-serine decreased from 13 mM to 1.8 mM with little change in V max, indicating an allosteric mechanism for nucleotide activation. In addition to acting as a serine racemase, the enzyme has been reported to act on l-serine O-sulfate as a dehydratase. When measured by HPLC, after derivatization with 2,4 dinitrophenylhydrazine, we found, as expected, a very rapid formation of pyruvate from this substrate. l-serine was also converted to pyruvate at about twice the racemization rate. l-serine O-sulfate dehydration was inhibited by ATP, while l-serine dehydration, like racemization, was activated by nucleotides, indicating that, for l-serine, dehydration and racemization take place at the same site.  相似文献   

13.
Kinetic and binding studies of yeast inorganic pyrophosphatase (EC 3.6.1.1) revealed a regulatory PPi-binding site. Rate vs substrate concentration dependencies were markedly nonhyperbolic in the range of 0.1-150 microM MgPPi at fixed Mg2+ levels of 0.05-10 mM provided that the enzyme had been preequilibrated with Mg2+. Imidodiphosphate, hydroxymethylenebisphosphonate, and phosphate eliminated the deviations from the Michaelis-Menten kinetics and inhibited PPi hydrolysis in a manner consistent with their binding at both active and regulatory sites. The results agreed with a model in which binding of uncomplexed PPi at the regulatory site markedly increases enzyme affinity for the activating Mg2+ ion. Ultrafiltration studies revealed the binding of at least 3 mol of the inhibitory hydroxymethylenebisphosphonate and of 2 mol of noninhibitory methylenebisphosphonate per mole of the dimeric enzyme.  相似文献   

14.
The availability of protein samples of sufficient quality and in sufficient quantity is a driving force in biology and biotechnology. Protein samples that are free of critical contaminants are required for specific assays. Large amounts of highly homogeneous and reproducible material are needed for crystallography and nuclear magnetic resonance studies of protein structure. Protein-based therapeutic factors used in human medicine must not contain any contaminants that might interfere with treatment. The roles played by molecular chaperones in protein folding and in many cellular processes make these proteins very attractive candidates as biochemical reagents, and the class of chaperones called chaperonins is one of the most important candidates. Methods for successfully purifying chaperonins are needed to advance the field of chaperonin-mediated protein folding. This article outlines the strategies and methods used to obtain pure chaperonin samples from different biological sources. The objective is to help new researchers obtain better quality samples of chaperonins from many new organisms.  相似文献   

15.
16.
17.
HSUR1 and HSUR2, two noncoding RNAs expressed by the oncogenic Herpesvirus saimiri, bind host microRNAs miR-142-3p, miR-16, and miR-27 with different purposes. While binding of miR-27 to HSUR1 triggers the degradation of the microRNA, miR-16 is tethered by HSUR2 to target host mRNAs to repress their expression. Here we show that the interaction with miR-142-3p is required for the activity of both HSURs. Coimmunoprecipitation experiments revealed that miR-142-3p allosterically regulates the binding of miR-27 and miR-16 to HSUR1 and HSUR2, respectively. The binding of two different miRNAs to each HSUR is not cooperative. HSURs can be engineered to be regulated by other miRNAs, indicating that the identity of the binding miRNA is not important for HSUR regulation. Our results uncover a mechanism for allosteric regulation of noncoding RNA function and a previously unappreciated way in which microRNAs can regulate gene expression.  相似文献   

18.
Allosteric regulation, cooperativity, and biochemical oscillations   总被引:3,自引:1,他引:3  
Allosteric regulation is associated with a number of periodic phenomena in biochemical systems. The cooperative nature of such regulatory interactions provides a source of nonlinearity that favors oscillatory behavior. We assess the role of cooperativity in the onset of biochemical oscillations by analyzing two specific examples. First, we consider a model for a product-activated allosteric enzyme which has previously been proposed to account for glycolytic oscillations. While enzyme cooperativity plays an important role in the occurrence of oscillations, we show that these may nevertheless occur in the absence of cooperativity when the reaction product is removed in a Michaelian rather than linear manner. The second model considered was recently proposed to account for signal-induced oscillations of intracellular calcium. This phenomenon originates from a nonlinear process of calcium-induced calcium release. Here also, the cooperative nature of that positive feedback favors the occurrence of oscillations but is not absolutely required for periodic behavior. Besides underlining the importance of cooperativity, the results highlight the role of diffuse nonlinearities distributed over several steps within a regulated system: even in the absence of cooperativity, such mild nonlinearities (e.g., of the Michaelian type) may combine to raise the overall degree of nonlinearity up to the level required for oscillations.  相似文献   

19.
Allosteric regulation of the light-harvesting system of photosystem II   总被引:9,自引:0,他引:9  
Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid delta pH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonation-dependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号