首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zymogen prothrombin is composed of fragment 1 containing a Gla domain and kringle-1, fragment 2 containing kringle-2, and a protease domain containing A and B chains. The prothrombinase complex assembled on the surface of platelets converts prothrombin to thrombin by cleaving at Arg-271 and Arg-320. The three-dimensional architecture of prothrombin and the molecular basis of its activation remain elusive. Here we report the first x-ray crystal structure of prothrombin as a Gla-domainless construct carrying an Ala replacement of the catalytic Ser-525. Prothrombin features a conformation 80 Å long, with fragment 1 positioned at a 36° angle relative to the main axis of fragment 2 coaxial to the protease domain. High flexibility of the linker connecting the two kringles suggests multiple arrangements for kringle-1 relative to the rest of the prothrombin molecule. Luminescence resonance energy transfer measurements detect two distinct conformations of prothrombin in solution, in a 3:2 ratio, with the distance between the two kringles either fully extended (54 ± 2 Å) or partially collapsed (≤34 Å) as seen in the crystal structure. A molecular mechanism of prothrombin activation emerges from the structure. Of the two sites of cleavage, Arg-271 is located in a disordered region connecting kringle-2 to the A chain, but Arg-320 is well defined within the activation domain and is not accessible to proteolysis in solution. Burial of Arg-320 prevents prothrombin autoactivation and directs prothrombinase to cleave at Arg-271 first. Reversal of the local electrostatic potential then redirects prothrombinase toward Arg-320, leading to thrombin generation via the prethrombin-2 intermediate.  相似文献   

2.
Native factor V contains two major polypeptide chains, h and 1. The molecular weights determined by gel electrophoresis in the presence of sodium dodecylsulfate and dithiothreitol (125 000 and 73 000) are in reasonable agreement with those obtained by gel filtration in 5 M guanidine-HC1 (125000 and 64000). Exposure of factor V to thrombin results in cleavage of the heavier chain to an altered form with a molecular weight of 87000. The other fragment of this proteolytic reaction appears to be a carbohydrate-rich piece, which migrates abnormally slowly on gel electrophoresis conducted under denaturing and reducing conditions. Both proteolytic cleavage products remain associated with the light chain during the purification of factor V. The 87000-Mr fragment is present in samples of factor V which are isolated by immunoprecipitation of blood obtained from a single animal by venous catheter. This finding suggests that some proteolysis may occur in vivo. In contrast, the molecular weight of the light chain is unaltered after thrombin proteolysis of either purified factor V or thrombin-treated plasma.  相似文献   

3.
4.
Binding of prothrombin, prethrombin 1, prethrombin 2 and thrombin to fibrinogen-Sepharose was studied. Thrombin and prethrombin 2 bound to fibrinogen-Sepharose, while prethrombin 1 and prothrombin did not. Bound thrombin and prethrombin 2 were recovered from the column by eluting with 0.1 M NaCl/0.05 M Tris-HCl buffer (pH 7.4). The affinity of thrombin and prethrombin 2 to fibrinogen-Sepharose depended on ionic strength and reached a maximum at 50 mm concentration. Prethrombin 2 interacts with fibrinogen as well as thrombin; and prothrombin fragment 1.2 is not important in the formation of this complex. Thus, prethrombin 2, which is a precursor of thrombin without measurable enzymatic activity and which lacks the single cleavage at Arg-322-Ile-323 present in thrombin, has the same or very similar structural conformation as thrombin and has the same macromolecular substrate recognition site. These results confirm the earlier results that active center is not necessary in fibrinogen-thrombin interaction.  相似文献   

5.
Protein C inhibitor (PCI) is a member of the serpin family of protease inhibitors with many biological functions and broad inhibitory specificity. Its major targets in blood are thrombin and activated protein C (APC), and the inhibition of both enzymes can be accelerated by glycosaminoglycans, including heparin. Acceleration of thrombin and APC inhibition by PCI requires that both protease and inhibitor bind to the same heparin chain to form a bridged Michaelis complex. However, the position of the heparin binding site of APC is opposite to that of thrombin, and formation of the bridged complexes must require either radical reorientation of the proteases relative to PCI or alternate heparin binding modes for PCI. In this study, we investigate how heparin bridges thrombin and APC to PCI by determining the effect of mutations in and around the putative heparin binding site of PCI. We found that heparin binds PCI in a linear fashion along helix H to bridge thrombin, consistent with our recent crystal structure (3B9F), but that it must rotate by approximately 60 degrees to engage Arg-229 to bridge APC. To gain insight into the possible modes of heparin binding to PCI, we solved a crystal structure of cleaved PCI bound to an octasaccharide heparin fragment to 1.55 angstroms resolution. The structure reveals a binding mode across the N terminus of helix H to engage Arg-229 and align the heparin binding site of APC. A molecular model for the heparin-bridged PCI.APC complex was built based on mutagenesis and structural data.  相似文献   

6.
Activated protein C (APC) exerts its anticoagulant activity via proteolytic degradation of the heavy chains of activated factor VIII (FVIIIa) and activated factor V (FVa). So far, three APC cleavage sites have been identified in the heavy chain of FVa: Arg-306, Arg-506, and Arg-679. To obtain more insight in the structural and functional implications of each individual cleavage, recombinant factor V (rFV) mutants were constructed in which two or three of the APC cleavage sites were mutated. After expression in COS-1 cells, rFV mutants were purified, activated with thrombin, and inactivated by APC. During this study we observed that activated rFV-GQA (rFVa-GQA), in which the arginines at positions 306, 506, and 679 were replaced by glycine, glutamine, and alanine, respectively, was still inactivated by APC. Further analysis showed that the inactivation of rFVa-GQA by APC was phospholipid-dependent and sensitive to an inhibitory monoclonal antibody against protein C. Inactivation proceeded via a rapid phase (kx1=5.4 x 10(4) M(-1) s(-1)) and a slow phase (kx2=3.2 x 10(3) M(-1) s(-1)). Analysis of the inactivation curves showed that the rapid phase yielded a reaction intermediate that retained approximately 80% of the original FVa activity, whereas the slow cleavage resulted in formation of a completely inactive reaction product. Inactivation of rFVa-GQA was accelerated by protein S, most likely via stimulation of the slow phase. Immunoblot analysis using a monoclonal antibody recognizing an epitope between Arg-306 and Arg-506 indicated that during the rapid phase of inactivation a fragment of 80 kDa was generated that resulted from cleavage at a residue very close to Arg-506. The slow phase was associated with the formation of fragments resulting from cleavage at a residue 1.5-2 kDa carboxyl-terminal to Arg-306. Our observations may explain the unexpectedly mild APC resistance associated with mutations at Arg-306 (FV HongKong and FV Cambridge) in the heavy chain of FV.  相似文献   

7.
Human protein C is the precursor of a serine proteinase in plasma which contains nine 4-carboxyglutamic acid residues and functions as a potent anticoagulant. It is activated by thrombin in the presence of an essential endothelial-cell-membrane glycoprotein cofactor, thrombomodulin. In a purified human system, vitamin K-dependent proteins such as factor X, prothrombin and prothrombin fragment 1 were able to inhibit protein C activation by the thrombin-thrombomodulin complex, using either detergent-solubilized thrombomodulin or thrombomodulin reconstituted into vesicles consisting of phosphatidylcholine and phosphatidylserine (1:1, w/w). Factors VII and IX and protein S were much less efficient. Prothrombin fragment 1 behaved as a non-competitive inhibitor with apparent Ki values of 4 microM in the absence, and of 2-2.5 microM in the presence, of phospholipids. Heat decarboxylation of fragment 1 abolished its ability to interfere in protein C activation, and high phospholipid concentrations could attenuate its inhibitory effect and were responsible for a gradual loss of the non-competitive character. Fragment 1 also inhibited the activation of 4-carboxyglutamic acid-domainless protein C, a proteolytic derivative of protein C lacking the 4-carboxyglutamic acid residues, without any influence from phospholipids. At high thrombin concentrations, with respect to thrombomodulin, the inhibitory effect of fragment 1 was diminished. Fragment 1, at 3.8 microM, inhibited by 50% the activation of protein C (0.1 or 0.3 microM) by thrombin. These results suggest that the 4-carboxyglutamic acid domain of vitamin K-dependent proteins can act as a modulator of the protein C anticoagulant pathway through two distinct types of interaction. The functional 4-carboxyglutamic acid domain would be necessary to allow the enhancement of protein C activation in the presence of anionic phospholipids and it could recognize a phospholipid-independent binding site on the thrombin-thrombomodulin complex.  相似文献   

8.
The Ca2+ -activated neutral protease can proteolyze both Ca2+ -dependent cyclic nucleotide phosphodiesterase and smooth muscle myosin light chain kinase. Ca2+ -dependent cyclic nucleotide phosphodiesterase from rat brain was converted to the Ca2+ -independent active form by Ca2+ -activated protease. The proteolytic effects on myosin light chain kinase of Ca2+-activated protease differed in the presence and absence of the Ca2+-calmodulin (CaM) complex. In the presence of bound CaM, myosin light chain kinase (130k dalton) was degradated to a major fragment of 62 kDa, which had Ca2+/CaM-dependent enzyme and CaM-binding activity. When digestion occurred in the absence of bound CaM, myosin light chain kinase cleaved to a fragment of 60 kDa. This peptide had no enzymatic activity in the presence or absence of the Ca2+-CaM complex. Available evidence suggests that the Ca2+-activated proteases may recognize the conformational change of smooth muscle myosin light chain kinase induced by Ca2+-CaM complex.  相似文献   

9.
Proteolytic fragmentation of myosin: location of SH-1 and SH-2 thiols.   总被引:2,自引:0,他引:2  
R Cardinaud 《Biochimie》1979,61(7):807-821
The heavy chain fragmentation pattern of native myosin when digested by proteolytic enzymes is influenced by such conditions as the nature of the proteolytic agent, ionic strength and presence or absence of divalent cations. HMM and S-1 produced by digestion of 14CNEM-labelled myosin under various conditions were analyzed by sodium dodecyl-sulfate polyacrylamide gel electrophoresis. Purified samples of these species were digested under controlled conditions by chymotrypsin and trypsin and a comparison of the observed heavy chain fragmentation patterns led to a sequential arrangement of the proteolytic fragments. The main features of this arrangement are the following: a 21K molecular weight tryptic peptide is found at the N-terminal side of myosin heavy chain. Adjacent to it is a 48K peptide, then a 19.5K peptide containing the two SH-1 and SH-2 thiols. These three peptides constitute the heavy chain of S-1. Adjacent to this S-1 heavy chain is a tryptic (and also chymotryptic) 40K peptide. The rest of the HMM heavy chain on the C-terminus is a sequence susceptible to both chymotrypsin and trypsin attack yielding an undefined number of small peptides.  相似文献   

10.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

11.
Thrombocytin, a serine protease from Bothrops atrox venom, caused platelet aggregation and release of platelet constituents at a concentration of 10(-7) M and clot retraction at a concentration of 2 x 10(-9) M. Thrombocytin was slightly more active when tested on platelets in plasma than on washed platelets suspended in Tyrode--albumin solution. Thrombin was 5 times more active than thrombocytin when tested on platelets in plasma and 50 times more active when tested on washed platelets. The patterns or release induced by thrombocytin and thrombin were similar. Prostaglandin E1 (10(-5) M) produced complete inhibition of platelet release induced by thrombocytin and thrombin. Indomethacin (10(-4) M) was without any effect. Antithrombin III, in the presence of heparin, inhibited the action of thrombocytin on platelets and on a synthetic peptide substrate (Tos-Gly-Pro-Arg-pNA.HCl). formation of an antithrombin III--thrombocytin complex was demonstrated on NaDodSO4--polyacrylamide gel electrophoresis. Hirudin and alpha 1-antitrypsin did not inactivate thrombocytin. Thrombocytin had a low fibrinogen-clotting activity (less than 0.06% that of thrombin). Thrombocytin also caused progressive degradation of the alpha chain of human fibrinogen, and it cleaved prothrombin, releasing products similar to intermediate 1 and fragment 1 produced by thrombin. Thrombocytin activated factor XIII by limited proteolysis and increased the procoagulant activity of factor VIII in a manner analogous to that of thrombin.  相似文献   

12.
The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were ∼50 and ∼10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an ∼340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed ∼4- and 11-fold reductions in A2 subunit generation and ∼3- and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.Factor VIII, a plasma protein missing or defective in individuals with hemophilia A, is synthesized as an ∼300-kDa single chain polypeptide corresponding to 2332 amino acids. Within the protein are six domains based on internal homologies and ordered as NH2-A1-A2-B-A3-C1-C2-COOH (1, 2). Bordering the A domains are short segments containing high concentrations of acidic residues that follow the A1 and A2 domains and precede the A3 domain and are designated a1 (residues 337–372), a2 (residues 711–740), and a3 (1649–1689). Factor VIII is processed by cleavage at the B-A3 junction to generate a divalent metal ion-dependent heterodimeric protein composed of a heavy chain (A1-a1-A2-a2-B domains) and a light chain (a3-A3-C1-C2 domains) (3).The activated form of factor VIII, factor VIIIa, functions as a cofactor for factor IXa, increasing its catalytic efficiency by several orders of magnitude in the phospholipid- and Ca2+-dependent conversion of factor X to factor Xa (4). The factor VIII procofactor is converted to factor VIIIa through limited proteolysis catalyzed by thrombin or factor Xa (5, 6). Thrombin is believed to act as the physiological activator of factor VIII, as association of factor VIII with von Willebrand factor impairs the capacity for the membrane-dependent factor Xa to efficiently activate the procofactor (5, 7). Activation of factor VIII occurs through proteolysis by either protease via cleavage of three P1 residues at Arg-740 (A2-B domain junction), Arg-372 (A1-A2 domain junction), and Arg-1689 (a3-A3 junction) (5). After factor VIII activation, there is a weak electrostatic interaction between the A1 and A2 domains of factor VIIIa (8, 9) and spontaneous inactivation of the cofactor occurs through A2 subunit dissociation from the A1/A3-C1-C2 dimer, consequently dampening factor Xase (3).Thrombin cleavage of factor VIII appears to be an ordered pathway, with relative rates at Arg-740 > Arg-1689 > Arg-372 and the initial proteolysis at Arg-740 facilitating proteolysis at Arg-372 as well as Arg-1689 (10). This latter observation was based upon results showing that mutations at Arg-740, impairing this cleavage, significantly reduced cleavage rates at the two other P1 sites. Thrombin-catalyzed activation of factor VIII is dependent upon interactions involving the anion binding exosites of the proteinase (11, 12). Exosite binding is believed to determine substrate affinity, whereas subsequent active site docking primarily affects Vmax (13). Furthermore, the complex interactions involving multiple cleavages within a single substrate may utilize a ratcheting mechanism (14) where presentation of the scissile bond is facilitated by a prior cleavage event.Cleavage at Arg-372 is a critical step in thrombin activation of factor VIII as it exposes a cryptic functional factor IXa-interactive site in the A2 domain (15), whereas cleavage at Arg-1689 liberates factor VIII from von Willebrand factor (16) and contributes to factor VIIIa specific activity (17, 18). Although cleavage at Arg-740 represents a fast step relative to cleavages at other P1 residues in the activation of factor VIII (19), the influence of Arg-1689 cleavage on cleavages in the heavy chain remains unknown. In the present study cleavage at Arg-1689 is examined using recombinant factor VIII variants possessing single point mutations of R1689Q and R1689H. Results indicating reduced rates of A1 and A2 subunit generation, which are dependent upon the residue at position 1689, suggest that cleavage at Arg-1689 affects rates of proteolysis at Arg-740 and Arg-372. These observations are consistent with a mechanism whereby heavy chain and light chain compete for a binding thrombin exosite(s), with heavy chain preferred over light chain. In this competition mechanism, cleavage at Arg-740 is favored over Arg-1689. Subsequent cleavage at Arg-372 in heavy chain may involve a ratcheting mechanism after initial cleavage at Arg-740. On the other hand, the mechanism for factor Xa-catalyzed activation of factor VIII appears to be less dependent on cleavage at the Arg-1689 site as compared with thrombin.  相似文献   

13.
The effect of prothrombin fragment 2 on the inhibition of thrombin by antithrombin III has been studied. Fragment 2 was found to slow the rate of inhibition of thrombin by antithrombin III about 3-fold. The effect of prothrombin fragment 2 on antithrombin III inhibition was examined by comparing its action in the presence of either thrombin or meizothrombin (des fragment 1). The second order rate constants for antithrombin III inhibition of thrombin with saturating fragment 2 and antithrombin III inhibition of meizothrombin (des fragment 1) were the same. Prothrombin fragment 2 had no effect on either antithrombin III inhibition of meizothrombin (des fragment 1) or Factor Xa. The effect of the fragment on the reaction mechanism of thrombin inhibition was evaluated to see if the fragment altered binding of antithrombin III to thrombin or inhibited the formation of the covalent complex. The fragment was found to have no inhibitory effect on the rate of covalent complex formation, indicating that the protective effect of the fragment is by inhibiting binding of antithrombin III to thrombin. These data suggest that prothrombin fragment 2 may be an important factor in controlling the localization of clot formation by regulating the interaction between thrombin and antithrombin III.  相似文献   

14.
Prethrombin-2 is the immediate zymogen precursor of the clotting enzyme thrombin, which is generated upon cleavage at R15 and separation of the A chain and catalytic B chain. The X-ray structure of prethrombin-2 determined in the free form at 1.9 ? resolution shows the 215-217 segment collapsed into the active site and occluding 49% of the volume available for substrate binding. Remarkably, some of the crystals harvested from the same crystallization well, under identical solution conditions, diffract to 2.2 ? resolution in the same space group but produce a structure in which the 215-217 segment moves >5 ? and occludes 24% of the volume available for substrate binding. The two alternative conformations of prethrombin-2 have the side chain of W215 relocating >9 ? within the active site and are relevant to the allosteric E*-E equilibrium of the mature enzyme. Another unanticipated feature of prethrombin-2 bears on the mechanism of prothrombin activation. R15 is found buried within the protein in ionic interactions with E14e, D14l, and E18, thereby making its exposure to solvent necessary for proteolytic attack and conversion to thrombin. On the basis of this structural observation, we constructed the E14eA/D14lA/E18A triple mutant to reduce the level of electrostatic coupling with R15 and promote zymogen activation. The mutation causes prethrombin-2 to spontaneously convert to thrombin, without the need for the snake venom ecarin or the physiological prothrombinase complex.  相似文献   

15.
Inactivation of alpha- and beta-thrombin by alpha 2-macroglobulin, by alpha 1-proteinase inhibitor and by antithrombin-III and heparin was studied. The amount of alpha- and beta-thrombin inactivated by antithrombin-III was proportional to the concentration of the inhibitor, but the inactivation rates of the two forms of thrombin were different. Heparin facilitated complex-formation between alpha-thrombin and antithrombin-III, whereas inactivation of beta-thrombin by antithrombin was only slightly influenced, even at a heparin concentration two orders of magnitude higher. alpha 2-Macroglobulin inhibited both alpha- and beta-thrombin activity similarly, i.e. the amount of alpha- and beta-thrombin inactivated as well as the rates of their inhibition were the same. alpha 1-Proteinase inhibitor also formed a complex with alpha- and beta-thrombin, similarly to antithrombin-III, although the inactivation of the enzyme needed high inhibitor concentration and long incubation time. These results suggest that the inactivation of beta-thrombin, if it occurs in the plasma, is also controlled by plasma inhibitors.  相似文献   

16.
The tetradecapeptide Ac-D-F-L-A-E-G-G-G-V-R-G-P-R-V-OMe, which mimics residues 7f-20f of the A alpha-chain of human fibrinogen, has been co-crystallized with bovine thrombin from ammonium sulfate solutions in space group P2(1) with unit cell dimensions of a = 83.0 A, b = 89.4 A, c = 99.3 A, and beta = 106.6 degrees. Three crystallographically independent complexes were located in the asymmetric unit by molecular replacement using the native bovine thrombin structure as a model. The standard crystallographic R-factor is 0.167 at 2.3-A resolution. Excellent electron density could be traced for the decapeptide, beginning with Asp-7f and ending with Arg-16f in the active site of thrombin; the remaining 4 residues, which have been cleaved from the tetradecapeptide at the Arg-16f/Gly-17f bond, are not seen. Residues 7f-11f at the NH2 terminus of the peptide form a single turn of alpha-helix that is connected by Gly-12f, which has a positive phi angle, to an extended chain containing residues 13f-16f. The major specific interactions between the peptide and thrombin are 1) a hydrophobic cage formed by residues Tyr-60A, Trp-60D, Leu-99, Ile-174, Trp-215, Leu-9f, Gly-13f, and Val-15f that surrounds Phe-8f; 2) a hydrogen bond linking Phe-8f NH to Lys-97 O;3) a salt link between Glu-11f and Arg-173; 4) two antiparallel beta-sheet hydrogen bonds between Gly-14f and Gly-216; and 5) the insertion of Arg-16f into the specificity pocket. Binding of the peptide is accompanied by a considerable shift in two of the loops near the active site relative to human D-phenyl-L-prolyl-L-arginyl chloromethyl ketone (PPACK)-thrombin.  相似文献   

17.
Koeppe JR  Seitova A  Mather T  Komives EA 《Biochemistry》2005,44(45):14784-14791
Thrombomodulin (TM) forms a 1:1 complex with thrombin. Whereas thrombin alone cleaves fibrinogen to make the fibrin clot, the thrombin-TM complex cleaves protein C to initiate the anticoagulant pathway. Crystallographic investigations of the complex between thrombin and TMEGF456 did not show any changes in the thrombin active site. Therefore, research has focused recently on how TM may provide a docking site for the protein C substrate. Previous work, however, showed that when the thrombin active site was occupied with substrate analogues labeled with fluorophores, the fluorophores responded differently to active (TMEGF1-6) versus inactive (TMEGF56) fragments of TM. To investigate this further, we have carried out amide H/(2)H exchange experiments on thrombin in the presence of active (TMEGF45) and inactive (TMEGF56) fragments of TM. Both on-exchange and off-exchange experiments show changes in the thrombin active site loops, some of which are observed only when the active TM fragment is bound. These results are consistent with the previously observed fluorescence changes and point to a mechanism by which TM changes the thrombin substrate specificity in favor of protein C cleavage.  相似文献   

18.
Staphylocoagulase with a molecular weight of 64,000 and subspecies ranging in molecular weight from 36,000 to 64,000 were purified by affinity column chromatography on bovine prothrombin-Sepharose 4B from the culture filtrates of the Staphylococcus aureus strains, st-213 and 104. The samples containing all molecular species from both strains had the same NH2-terminal sequence, Ile-Val-Thr-Lys-Asp-Tyr-Ser-Lys-Glu-, implying that the molecular heterogeneity was due to proteolytic degradation to some extent of the COOH-terminal portion during cultivation or purification. Staphylocoagulase (Mr = 64,000) from strain st-213 formed an active complex, "staphylothrombin," with human prothrombin in a molar ratio of 1 to 1.1. Staphylothrombin was unstable at 37 degrees C and some portions of staphylocoagulase in the complex were rapidly degraded into small fragments, together with the fragmentation of prothrombin into prethrombin 1 and prothrombin fragment 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent fluorography for the products of prothrombin activation by staphylocoagulase in the presence of [3H]diisopropylphosphofluoridate (DFP) demonstrated the formation of a DFP-sensitive active site in the prothrombin molecule, and no cleavage of the Arg-Ile bond linking the A and B chains of alpha-thrombin was found. The enzymatic properties including the pH-dependency of the activity, substrate specificity and behavior towards thrombin inhibitors of staphylothrombin differed from those of alpha-thrombin, although the active site titration of staphylothrombin with p-nitrophenyl-p'-guanidinobenzoate showed 0.95 +/- 0.2 mol of active site/mol of enzyme.  相似文献   

19.
K J Clemetson 《Blood cells》1983,9(2):319-329
The basic structure of platelet membrane glycoprotein I (GPI) and its relation to glycocalicin are now well understood. Glycocalicin is a proteolytic fragment produced by the action of an endogenous Ca2+ activated protease. GPI consists of two glycopeptides, an alpha and a beta chain connected by a disulphide bridge. Glycocalicin is the major part of the GPI alpha chain and can be split by trypsin into a heavily glycosylated trypsin-resistant fragment and a peptide containing at least one intramolecular disulphide bridge and a thrombin binding site. Both the alpha and the beta chains of GPI show hydrophobic properties and are probably integral membrane proteins. The position of the von Willebrand factor binding site within the GPI molecule is still controversial but the bulk of the evidence points to it lying within the non-glycosylated part of the glycocalicin fragment. It is however evident that the GPI beta chain may influence the GPI alpha chain in maintaining the correct conformation of the binding site. The von Willebrand factor binding site and the thrombin binding site appear to be independent but may nevertheless influence one another.  相似文献   

20.
The N-terminal cyanogen bromide fragment from the Bβ chain of bovine fibrinogen was isolated, and its molecular weight was estimated to be approximately 14,000–15,500. The ratio of the Michaelis-Menten constants, kcatKm, for its hydrolysis by bovine thrombin was found to be 3 × 10?7 [(NIH unit/liter)s]?1, indicating that the Bβ fragment is a poor substrate for thrombin compared to the corresponding Aα chain fragment. This value of kcatKm is too small to account for the rate of release of fibrinopeptide B from fibrinogen by thrombin. It is suggested that, while the Aα chain contains all of the amino acid residues necessary to interact with thrombin, the Bβ chain does not; i.e., some of the binding sites that are used in the hydrolysis of the Bβ chain are assumed to be located on either the α or γ chains of fibrinogen. An alternative hypothesis is that, after the Bβ chain fragment is removed from the fibrinogen molecule, it does not have the proper conformation to be hydrolyzed by thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号