首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Kinetics of reduction of phototrophic bacterial flavocytochromes c by exogenous flavin semiquinones and fully reduced flavins generated by laser flash photolysis have been studied. The mechanisms of reduction of Chromatium and Chlorobium flavocytochromes c are more similar to one another than previously thought. Neither protein is very reactive with neutral flavin semiquinones (k less than 10(7) M-1 s-1), and the reactions with fully reduced flavins are slower than expected on the basis of comparison with other electron-transfer proteins of similar redox potentials. Deazaflavin radical is reactive with the flavocytochromes c by virtue of its low redox potential, but this reaction is also slower than expected on the basis of comparison with other electron-transfer proteins. These experiments indicate that the active site for reduction of flavocytochrome c is relatively buried and probably inaccessible to solvent. Fully reduced FMN does not show an ionic strength effect in its reaction with flavocytochrome c, which demonstrates that the active site is uncharged. Sulfite, which forms an adduct with protein-bound FAD, partially blocks heme reduction. This shows that heme is reduced via the FAD. The rate constant for intramolecular electron transfer between FAD and heme must be on the order of 10(4) s-1 or larger.  相似文献   

2.
The complete sequence of the 21-kDa cytochrome subunit of the flavocytochrome c (FC) from the purple phototrophic bacterium Chromatium vinosum has been determined to be as follows: EPTAEMLTNNCAGCHG THGNSVGPASPSIAQMDPMVFVEVMEGFKSGEIAS TIMGRIAKGYSTADFEKMAGYFKQQTYQPAKQSF DTALADTGAKLHDKYCEKCHVEGGKPLADEEDY HILAGQWTPYLQYAMSDFREERRPMEKKMASKL RELLKAEGDAGLDALFAFYASQQ. The sequence is the first example of a diheme cytochrome in a flavocytochrome complex. Although the locations of the heme binding sites and the heme ligands suggest that the cytochrome subunit is the result of gene doubling of a type I cytochrome c, as found with Azotobacter cytochrome c4, the extremely low similarity of only 7% between the two halves of the Chromatium FC heme subunit rather suggests that gene fusion is at the evolutionary origin of this cytochrome. The two halves also require a single residue internal deletion for alignment. The first half of the Chromatium FC heme subunit is 39% similar to the monoheme subunit of the FC from the green phototrophic bacterium Chlorobium thiosulfatophilum, but the second half is only 9% similar to the Chlorobium subunit. The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT. It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits. The N terminus of the flavin subunit is homologous to a number of flavoproteins, including succinate dehydrogenase, glutathione reductase, and monamine oxidase. There is no obvious homology to the Pseudomonas putida FC flavin subunit, which suggests that the two types of flavocytochrome c arose by convergent evolution. This is consistent with the dissimilar enzyme activities of FC as sulfide dehydrogenase in the phototrophic bacteria and as p-cresol methylhydroxylase in Pseudomonas. We also present a sequence "fingerprint" pattern for the recognition of FAD-binding proteins which is an extended version of the consensus sequence previously presented (Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101-107) for nucleotide binding sites.  相似文献   

3.
Resonance Raman spectra with both Soret and visible excitation have been obtained for Chromatium flavocytochrome c552 and its isolated diheme subunit under varying conditions of pH and inhibitor binding. The spectra are generally consistent with previously established classification schemes for porphyrin ring vibrations. The presence of covalently bound flavin in the protein was apparent in the fluorescent background it produced and in flavin-mediated photoeffects observed in heme Raman spectra obtained at high laser power. No flavin modes were present in the Raman spectra, nor was any evidence of direct heme-flavin interaction found by using this technique; however, a systematic perturbation of heme B1g vibrational frequencies was found in the oxidized holoprotein. The heme vibrational frequencies of c552 are compared to those of the diheme peptide and of other c-type cytochromes. They are consistent with an interpretation that involves pH-dependent changes in axial ligation and treats the hemes and flavin as isolated chromphores communicating via protein-mediated interactions.  相似文献   

4.
Flavocytochrome c552 from Chromatium vinosum catalyzes the oxidation of sulfide to sulfur using a soluble c-type cytochrome as an electron acceptor. Mitochondrial cytochrome c forms a stable complex with flavocytochrome c552 and may function as an alternative electron acceptor in vitro. The recognition site for flavocytochrome c552 on equine cytochrome c has been deduced by differential chemical modification of cytochrome c in the presence and absence of flavocytochrome c552 and by kinetic analysis of the sulfide:cytochrome c oxidoreductase activity of m-trifluoromethylphenylcarbamoyl-lysine derivatives of cytochrome c. As with mitochondrial redox partners, interaction occurs around the exposed heme edge at the "front face" of cytochrome c. However, the domain recognized by flavocytochrome c552 seems to extend to the right of the heme edge, whereas the site of interaction with mitochondrial cytochrome c oxidase and reductase is more to the left. Km but not Vmax of the electron transfer reaction with mitochondrial cytochrome c increases with increasing ionic strength. The correlation of chemical modification and ionic strength dependence data indicates that the electrostatic interaction between the two hemoproteins involves fewer ionic bonds than that with other redox partners of cytochrome c.  相似文献   

5.
J T Hazzard  T L Poulos  G Tollin 《Biochemistry》1987,26(10):2836-2848
The kinetics of reduction by free flavin semiquinones of the individual components of 1:1 complexes of yeast ferric and ferryl cytochrome c peroxidase and the cytochromes c of horse, tuna, and yeast (iso-2) have been studied. Complex formation decreases the rate constant for reduction of ferric peroxidase by 44%. On the basis of a computer model of the complex structure [Poulos, T.L., & Finzel, B.C. (1984) Pept. Protein Rev. 4, 115-171], this decrease cannot be accounted for by steric effects and suggests a decrease in the dynamic motions of the peroxidase at the peroxide access channel caused by complexation. The orientations of the three cytochromes within the complex are not equivalent. This is shown by differential decreases in the rate constants for reduction by neutral flavin semiquinones upon complexation, which are in the order tuna much greater than horse greater than yeast iso-2. Further support for differences in orientation is provided by the observation that, with the negatively charged reductant FMNH., the electrostatic environments near the horse and tuna cytochrome c electron-transfer sites within their respective complexes with peroxidase are of opposite sign. For the horse and tuna cytochrome c complexes, we have also observed nonlinear concentration dependencies of the reduction rate constants with FMNH.. This is interpreted in terms of dynamic motion at the protein-protein interface. We have directly measured the physiologically significant intra-complex one electron transfer rate constants from the three ferrous cytochromes c to the peroxide-oxidized species of the peroxidase. At low ionic strength these rate constants are 920, 730, and 150 s-1 for tuna, horse, and yeast cytochromes c, respectively. These results are also consistent with the contention that the orientations of the three cytochromes within the complex with CcP are not the same. The effect on the intracomplex electron-transfer rate constant of the peroxidase amino acid side chain(s) that is (are) oxidized by the reduction of peroxide was determined to be relatively small. Thus, the rate constant for reduction by horse cytochrome c of the peroxidase species in which only the heme iron atom is oxidized was decreased by only 38%, indicating that this oxidized side-chain group is not tightly coupled to the ferryl peroxidase heme iron. Finally, it was found that, in the absence of cytochrome c, neither of the ferryl peroxidase species could be rapidly reduced by flavin semiquinones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Preliminary crystallographic data are given for Chromatium vinosum flavocytochrome c552. This protein is a 72,000 Mr complex incorporating one flavin and two c-type cytochrome subunits. Interest attaches to the complex structure owing to observed rapid rates of electron transfer between the flavin and heme prosthetic groups. These results suggest that the structure determination of flavocytochrome c552 will allow direct examination of a productive interprotein electron transfer complex.  相似文献   

7.
《BBA》1986,848(1):131-136
The interaction between horse heart cytochrome c and Chromatium vinosum flavocytochrome c-552 was studied using the water-soluble reagent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Treatment of flavocytochrome c-552 with EDC was found to inhibit the sulfide: cytochrome c reductase activity of the enzyme. SDS gel electrophoresis studies revealed that EDC treatment led to modification of carboxyl groups in both the Mr 21000 heme peptide and the Mr 46000 flavin peptide, and also to the formation of a cross-linked heme peptide dimer with an Mr value of 42000. Both the inhibition of sulfide: cytochrome c reductase activity and the formation of the heme peptide dimer were decreased when the EDC modification was carried out in the presence of cytochrome c. In addition, two new cross-linked species with Mr values of 34000 and 59000 were formed. These were identified as cross-linked cytochrome c-heme peptide and cytochrome c-flavin peptide species, respectively. Neither of these species were formed in the presence of a cytochrome c derivative in which all of the lysine amino groups had been dimethylated, demonstrating that EDC had cross-linked lysine amino groups on native cytochrome c to carboxyl groups on the heme and flavin peptides. A complex between cytochrome c and flavocytochrome c-552 was required for cross-linking to occur, since ionic strengths above 100 mM inhibited cross-linking.  相似文献   

8.
The kinetics of reduction of free flavin semiquinones of the individual components of 1:1 covalent and electrostatic complexes of yeast ferric and ferryl cytochrome c peroxidase and ferric horse cytochrome c have been studied. Covalent cross-linking between the peroxidase and cytochrome c at low ionic strength results in a complex that has kinetic properties both similar to and different from those of the electrostatic complex. Whereas the cytochrome c heme exposure to exogenous reductants is similar in both complexes, the apparent electrostatic environment near the cytochrome c heme edge is markedly different. In the electrostatic complex, a net positive charge is present, whereas in the covalent complex, an essentially neutral electrostatic charge is found. Intracomplex electron transfer within the two complexes is also different. For the covalent complex, electron transfer from ferrous cytochrome c to the ferryl peroxidase has a rate constant of 1560 s-1, which is invariant with respect to changes in the ionic strength. The rate constant for intracomplex electron transfer within the electrostatic complex is highly ionic strength dependent. At mu = 8 mM a value of 750 s-1 has been obtained [Hazzard, J. T., Poulos, T. L., & Tollin, G. (1987) Biochemistry 26, 2836-2848], whereas at mu = 30 mM the value is 3300 s-1. This ionic strength dependency for the electrostatic complex has been interpreted in terms of the rearrangement of the two proteins comprising the complex to a more favorable orientation for electron transfer. In the case of the covalent complex, such reorientation is apparently impeded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.  相似文献   

10.
Cellobiose dehydrogenase (CDH) is an extracellular flavocytochrome containing flavin and b-type heme, and plays a key role in cellulose degradation by filamentous fungi. To investigate intermolecular electron transfer from CDH to cytochrome c, Phe166, which is located in the cytochrome domain and approaches one of propionates of heme, was mutated to Tyr, and the thermodynamic and kinetic properties of the mutant (F166Y) were compared with those of the wild-type (WT) enzyme. The mid-point potential of heme in F166Y was measured by cyclic voltammetry, and was estimated to be 25 mV lower than that of WT at pH 4.0. Although presteady-state reduction of flavin was not affected by the mutation, the rate of subsequent electron transfer from flavin to heme was halved in F166Y. When WT or F166Y was reduced with cellobiose and then mixed with cytochrome c, heme re-oxidation and cytochrome c reduction occurred synchronously, suggesting that the initial electron is transferred from reduced heme to cytochrome c. Moreover, in both enzymes the observed rate of the initial phase of cytochrome c reduction was concentration dependent, whereas the second phase of cytochrome c reduction was dependent on the rate of electron transfer from flavin to heme, but not on the cytochrome c concentration. In addition, the electron transfer rate from flavin to heme was identical to the steady-state reduction rate of cytochrome c in both WT and F166Y. These results clearly indicate that the first and second electrons of two-electron-reduced CDH are both transferred via heme, and that the redox reaction of CDH involves an electron-transfer chain mechanism in cytochrome c reduction.  相似文献   

11.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   

12.
M C Walker  G Tollin 《Biochemistry》1991,30(22):5546-5555
The kinetics of reduction of the flavocytochrome from Saccharomyces cerevisiae by exogenous deazaflavin semiquinones have been investigated by using laser flash photolysis. Direct reduction by deazaflavin semiquinone of both the b2 heme and the FMN cofactor occurred via second-order kinetics with similar rate constants (9 x 10(8) M-1 s-1). A slower, monoexponential, phase of FMN reoxidation was also observed, concurrent with a slow phase of heme reduction. The latter accounted for approximately 20-25% of the total heme absorbance change. Both of these slow phases were protein concentration dependent, yielding identical second-order rate constants (1.1 x 10(7) M-1 s-1), and were interpreted as resulting from intermolecular electron transfer from the FMN semiquinone on one protein molecule to an oxidized heme on a second molecule. Consistent with this conclusion, no slow phase of heme reduction was observed with deflavo-flavocytochrome b2. Upon the addition of pyruvate (but not D-lactate or oxalate), the second-order rate constant for heme reduction was unaffected, but direct reduction of the FMN cofactor was no longer observed. Reduction of the heme cofactor was followed by a slower partial reoxidation, which occurred concomitantly with a monoexponential phase of FMN reduction. Both processes were protein concentration independent and were interpreted as the result of intramolecular electron transfer from reduced b2 heme to oxidized FMN. Potentiometric titrations of the flavocytochrome in the absence and presence of pyruvate demonstrated that the thermodynamic driving force for electron transfer from FMN to heme is much greater in the absence of pyruvate. Despite this, intramolecular electron transfer was only observed in the presence of pyruvate. This result is interpreted in terms of a conformational change induced by pyruvate binding which permits electron transfer between the cofactors. The rate constant for intramolecular electron transfer in the presence of pyruvate was dependent on ionic strength, suggesting the occurrence of electrostatic effects which influence this process.  相似文献   

13.
p-Cresol methylhydroxylase (PCMH) isolated from Pseudomonas putida is an alpha 2 beta 2 tetramer of approximate subunit Mr 49,000 and 9,000. It is a flavocytochrome c containing covalently bound FAD in the larger subunit and covalently bound heme in the smaller. Crystals in space group P2(1)2(1)2(1) with unit-cell parameters a = 140.3 A, b = 130.6 A, and c = 74.1 A contain one full molecule per asymmetric unit and diffract anisotropically to about 2.8-A resolution in two directions and to about 3.3-A resolution in the third. An electron density map has been computed at a nominal resolution of 3.0 A by use of area detector data from native crystals and from two derivatives. The phases were improved with the B.C. Wang solvent leveling procedure, and the map was averaged about the noncrystallographic 2-fold axis. The cytochrome subunit, whose amino acid sequence is known, has been fitted to the electron density on a graphics system. The course of the polypeptide chain of the flavoprotein subunit, whose sequence is mostly unknown, has been traced in a minimap and a model of polyalanine fitted to the electron density on the graphics system. The flavoprotein subunit consists of three domains in close contact. The N-terminal domain consists largely of beta-structure and contains most of the FAD binding site. The second domain contains a seven-stranded antiparallel beta-sheet of unusual topology connected by antiparallel alpha-helices on one side. The flavin ring lies at the juncture of the first two domains. The third domain lies against the first domain and helps cover the rest of the FAD chain. The cytochrome subunit resembles other small cytochromes such as c-551 and c5 and fits into a depression on the surface of the large flavoprotein subunit. The flavin and heme planes are nearly perpendicular, the normals to the planes being approximately 65 degrees apart. The two groups are separated by about 8 A, the distance from one of the vinyl methylene carbon atoms of the heme to the 8 alpha-methyl group of the flavin ring.  相似文献   

14.
This study is part of a series aimed at the characterization of individual steps of electron transfer taking place between prosthetic flavin, heme b2, heme c within active sites and complexes. After rapid mixing of ferricytochrome c with partially reduced flavocytochrome b2, the reaction is followed at the level of two reactants, cytochrome b2 and cytochrome c. In order to define the proper reactivity of flavosemiquinone, conditions under which this form is highly stabilized (presence of pyruvate) have been chosen. With the help of simulations, it has been possible to characterize a rapid step of electron transfer from cytochrome b2 to cytochrome c within a complex (at approx. 70% saturation) and a slow step k = 5 s-1 assigned to cytochrome b2 reduction by flavosemiquinone within the active site of the pyruvate-liganded enzyme.  相似文献   

15.
Saccharomyces cerevisiae flavocytochrome b 2 couples the oxidation of L-lactate to the reduction of cytochrome c. The second-order rate constant for cytochrome c reduction by flavocytochrome b 2 depends on the rate of complex formation and is sensitive to ionic strength. Mutations in the heme domain of flavocytochrome b 2 (Glu63→Lys, Asp72→Lys and the double mutation Glu63→Lys:Asp72→Lys) have significant effects on the reaction with cytochrome c, implicating these residues in complex formation. This kinetic information has been used to guide molecular modelling studies, which are consistent with there being no one single best-configuration. Rather, there is a set of possible complexes in which the docking-face of cytochrome c can approach flavocytochrome b 2 in a variety of orientations. Four cytochromes c can be accommodated on the flavocytochrome b 2 tetramer, with each cytochrome c forming interactions with only one flavocytochrome b 2 subunit. All the models involve residues 72 and 63 on flavocytochrome b 2 but in addition predict that Glu237 may also be important for complex formation. These acidic residues interact with the basic residues 13, 27 and 79 on cytochrome c. Through this triangle of interactions runs a possible σ-tunnelling pathway for electron transfer. This pathway starts with the imidazole ring of His66 (a ligand to the heme-iron of flavocytochrome b 2) and ends with the ring of Pro68, which is in van der Waals contact with the cytochrome c heme. In total, the edge-to-edge "through space" distance from the imidazole ring of His66 to the C3C pyrrole ring of cytochrome c is 13.1?Å.  相似文献   

16.
The electrochemistry of the enzyme, sulfide:cytochrome c oxidoreductase, also known as flavocytochrome c552 from the purple sulfur bacterium, Chromatium vinosum, has been studied using several modified electrodes. Direct electron transfer between the heme of the flavocytochrome and an electrode is observed in the presence of a redox-inactive cationic species which promotes the voltammetry of the enzyme. Quasi-reversible electron transfer was achieved using the aminoglycoside, neomycin, as a promoter at either a modified gold or polished edge-plane graphite electrode. Further evidence for direct electron transfer is provided by the catalytic response of the enzyme at the electrode in the presence of substrate. Also reported is the direct spectroelectrochemistry of flavocytochrome c552 at an optically transparent thin layer gold electrode modified with Cys-Glu-Cys in the presence of neomycin.  相似文献   

17.
A Desbois  M Tegoni  M Gervais  M Lutz 《Biochemistry》1989,28(20):8011-8022
Resonance Raman spectra of Hansenula anomala L-lactate:cytochrome c oxidoreductase (or flavocytochrome b2), of its cytochrome b2 core, and of a bis(imidazole) iron-protoporphyrin complex were obtained at the Soret preresonance from the oxidized and reduced forms. Raman contributions from both the isoalloxazine ring of flavin mononucleotide (FMN) and the heme b2 were observed in the spectra of oxidized flavocytochrome b2. Raman diagrams showing frequency differences of selected FMN modes between aqueous and proteic environments were drawn for various flavoproteins. These diagrams were closely similar for flavocytochrome b2 and for flavodoxins. This showed that the FMN structure must be very similar in both types of proteins, despite their very different proteic pockets. However, the electron density at this macrocycle was found to be higher in flavocytochrome b2 than in these electron transferases. No significant difference was observed between the heme structures in flavocytochrome b2 and in cytochrome b2 core. The porphyrin center-N(pyrrole) distances in the oxidized and reduced heme b2 were estimated to be 1.990 and 2.022 A from frequencies of porphyrin skeletal modes, respectively. The frequency of the vinyl stretching mode of protoporphyrin was found to be very affected in resonance Raman spectra of flavocytochrome b2 and of cytochrome b2 core (1634-1636 cm-1) relative to those observed in the spectra of iron-protoporphyrin [bis(imidazole)] complexes (1620 cm-1). These specificities were interpreted as reflecting a near coplanarity of the vinyl groups of heme b2 with the pyrrole rings to which they are attached. The low-frequency regions of resonance Raman indicated that the iron atoms of the four hemes b2 are in the porphyrin plane whatever their oxidation state. The histidine-Fe-histidine symmetric stretching mode was located at 205 cm-1 in the spectra of flavocytochrome b2 and of cytochrome b2 core. It was insensitive to the iron oxidation state and indicated strong Fe-His bonds in both states.  相似文献   

18.
The reduction of the tetraheme cytochrome c3 (from Desulfovibrio vulgaris, strains Miyazaki F and Hildenbourough) by flavin semiquinone and reduced methyl viologen follows a monophasic kinetic profile, even though the four hemes do not have equivalent reduction potentials. Rate constants for reduction of the individual hemes are obtained subsequent to incrementally reducing the cytochrome by phototitration. The dependence of each rate constant on the reduction potential difference between the heme and the reductant can be described by outer sphere electron transfer theroy. Thus, the very low reduction potentials of the cytochrome c3 hemes compensate for the very large solvent accessibility of the hemes. The relative rate constants for electron transfer to the four hemes of cytochrome c3 are consistent with the assignments of reduction potential to hemes previously made by Park et al. (Park, J.-S., Kano, K., Niki, S. and Akutsu, H. (1991) FEBS Lett. 285, 149-151) using NMR techniques. The ionic strength dependence of the observed rate constant for reduction by the methyl viologen radical cation indicates that ionic strength substantially alters the structure and/or the heme reduction potentials of the cytochrome. This result is confirmed by reduction with a neutral flavin species (5-deazariboflavin semiquinone) in which the reactivity of the highest potential heme decreases and the reactivity of the lowest potential heme increases at high (500 mM) ionic strength, and by the sensitivity of heme methyl resonances to ionic strength as observed by 1H-NMR. These unusual ionic strength-dependent effects may be due to a combination of structural changes in the cytochrome and alterations of the electrostatic fields at elevated ionic strengths.  相似文献   

19.
Yeast flavocytochrome b 2 tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b 2. Each subunit of the soluble tetrameric enzyme consists of an N terminal b 5-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b 2 domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b 2 functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b 5-like domain is fused to proteins carrying other redox functions.  相似文献   

20.
M C Walker  G Tollin 《Biochemistry》1992,31(10):2798-2805
Intramolecular electron transfer between the heme and flavin cofactors of flavocytochrome b2 is an obligatory step during the enzymatic oxidation of L-lactate and subsequent reduction of cytochrome c. Previous kinetic studies using both steady-state and transient methods have suggested that such intramolecular electron transfer is inhibited when pyruvate, the two-electron oxidation product of L-lactate, is bound at the active site of Hansenula anomala flavocytochrome b2. In contrast to this, we have recently demonstrated using laser flash photolysis that intramolecular electron transfer could be observed in the flavocytochrome b2 from Saccharomyces cerevisiae only when pyruvate was present [Walker, M., & Tollin, G. (1991) Biochemistry 30, 5546-5555], despite a large thermodynamic driving force of 100 mV and apparently favorable cofactor geometry as indicated by crystallographic studies. In the present study, we have utilized laser flash photolysis to investigate intramolecular electron transfer in the flavocytochrome b2 from H. anomala in an effort to address these apparently conflicting interpretations with respect to the influence of pyruvate on enzyme properties. The results obtained are closely comparable to those we reported using the protein from Saccharomyces. Thus, in the absence of pyruvate, bimolecular reduction of both the heme and FMN cofactors by deazaflavin semiquinone occurs (k approximately 10(9) M-1 s-1), followed by a protein concentration dependent intermolecular electron transfer from the semiquinone form of the FMN cofactor to the heme (k approximately 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号