首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding the beta chain of the human T-cell receptor for antigen is composed of variable (V), diversity (D), joining (J), and constant (C) gene segments which undergo specific rearrangements during T-lymphocyte ontogeny. Southern blot analyses of seven human T-cell tumor lines and normal human T-lymphocyte clones revealed that most of these T-cell lines rearrange their Ti beta genes differently. The T-cell tumor line HPB-MLT rearranges and transcribes both of its Ti beta genes. Cloning and sequencing of the Ti beta cDNAs corresponding to these rearrangements revealed that one of the rearranged Ti beta genes is defective, while the other is functional and corresponds to the Ti beta protein expressed on the surface of these cells. Thus, this cell line displays a pattern of allelic exclusion of Ti beta gene expression. A comparison of four C beta 2-containing Ti beta cDNAs from three different cell lines revealed that three of the four utilize the same J beta 2.5 gene segment joined to different D beta and V beta genes, suggesting that there may be preferential use of this J gene during J beta 2 rearrangements. Hybridization analyses with probes for the alpha and beta genes of the T-cell receptor and the T-cell-specific T gamma gene revealed that HPB-MLT cells appear to express approximately equivalent amounts of RNA corresponding to each of the rearranged Ti alpha and Ti beta genes. However, they express a much lower level of T gamma RNA.  相似文献   

2.
A Winoto  D Baltimore 《Cell》1989,59(4):649-655
T cells expressing either the alpha beta or gamma delta antigen receptor (TCR) are distinct cell lineages. The single locus encoding the TCR alpha and delta genes requires special regulation to avoid alpha gene expression in gamma delta T cells. We show here that the minimal alpha enhancer is active in the gamma delta T cell lineage but gains alpha beta lineage specificity through negative cis-acting elements 3' of the C alpha gene that silence the enhancer in gamma delta T cells. The negative elements at the C alpha locus consist of several silencers that work in an orientation- and distance-independent fashion. These silencers also act on a retroviral enhancer that is normally ubiquitously expressed, restricting its activity to alpha beta cells. The alpha silencers are active in non-T cell lines, suggesting that the decision of a cell to differentiate into the alpha beta T cell lineage may involve specific relief from these silencers. Silencers are likely to be as important as enhancers in establishing lineage-specific gene expression in many systems.  相似文献   

3.
A total of 33 human leukemia/lymphoma cell lines were classified into 4 groups with respect to the pattern of cell membrane (sm) expression of the CD3 and T cell receptor (TCR) molecules; (i) smCD3+TCR alpha beta (16 cell lines), (ii) smCD3+TCR beta delta (1 cell line), (iii) smCD3+TCR gamma delta (3 cell lines) amd (iv) smCD3-TCR- (13 cell lines), respectively. Using monoclonal antibodies (MoAbs) specific to CD3 (NU-T3), TCR alpha chain (alpha F1), TCR beta chain (beta F1), and TCR gamma chain (C gamma M1), respectively, cytoplasmic (cy) expression of these molecules was determined by immunofluorescence test. Expression of cyCD3 was present in all cell lines regardless of groups. In group (i), all 16 cell lines expressed both TCR alpha and beta chains. While only TCR beta chain was expressed in group (ii), TCR gamma chain was expressed in all 3 cell lines of group (iii). One (PEER) of the three in group (iii) expressed TCR beta chain as well. In group (iv), we found 8 cell lines with cyTCR alpha expression, 11 cell lines with cyTCR beta expression, and 10 cell lines with cyTCR gamma expression, respectively. For TCR genes, except 1 cell line all cell lines were found to present rearranged C beta gene and its mRNA, including all 3 TCR gamma/delta cell lines of group (iii). One of the TCR alpha beta cell lines exhibited rearranged C delta and J delta genes as well as its mRNA. Two cell lines of the 13 CD3-TCR- of group (iv) exhibited rearranged C delta and J delta and its mRNA. An NK-like activity and IL-2 production were induced in the TCR beta delta and gamma delta cell lines [group (ii) and (iii)] by treatment with PHA and PMA.  相似文献   

4.
Diversity, rearrangement, and expression of murine T cell gamma genes   总被引:52,自引:0,他引:52  
R D Garman  P J Doherty  D H Raulet 《Cell》1986,45(5):733-742
Although the T cell gamma genes are similar in many respects to T cell receptor alpha and beta genes, earlier studies suggested that only a single gamma variable (V gamma) gene is expressed in mature T cells. We report the isolation and characterization of three new rearranged V gamma genes from murine fetal thymocytes. Although each of the new V gamma gene rearrangements is present in fetal thymocytes, two of them are undetectable in mature T cells. The levels of mRNA corresponding to each type of V gamma gene rearrangement in mature T cells are dramatically diminished compared with those in fetal thymocytes, although the abundance of two of the rearranged genes is increased in mature T cells. Our results demonstrate that there is significant expressed variability of gamma genes in immature T cells. Furthermore, the dynamics of gamma gene rearrangement and expression support the idea that gamma genes function in immature T cells.  相似文献   

5.
Expression of phospholipase C isozymes by murine B lymphocytes   总被引:5,自引:0,他引:5  
Cross-linking of membrane (m) Ig, the B cell receptor for Ag, activates protein tyrosine phosphorylation and hydrolysis of phosphotidylinositol 4,5-bisphosphate. The latter signal transduction pathway is an important mediator of antigen receptor engagement. The initial event in this pathway is the activation of phospholipase C (PLC). The identity of the isozyme of PLC used in B cells and the mechanism by which it becomes activated are currently unknown. The cDNA encoding five different isozymes have been cloned. As a first step in identifying the isozyme of PLC that is coupled to mIgM, murine cDNA fragments for the five cloned PLC isozymes were generated by the polymerase chain reaction (PCR), cloned, and used to screen a panel of B cell lines representing different stages of development for PLC mRNA expression. All the B cell lines tested expressed high levels of PLC alpha and PLC gamma 2 mRNA, whereas PLC beta and PLC delta mRNA expression were undetectable by both Northern blot and PCR analysis. PLC gamma 1 had a more complicated pattern of mRNA expression. PLC gamma 1 mRNA expression was lower than that observed for PLC alpha or PLC gamma 2 mRNA and varied widely among different cell lines. The pattern of PLC gamma 1 mRNA expression did not correlate with the developmental stage of the cell lines. The pattern of PLC gamma 1 protein expression in the panel of B cell lines correlated with the pattern of PLC gamma 1 mRNA expression. PLC gamma 1 expression was very low in several B cell lines, despite the fact that these cell lines show mIgM-stimulatable PLC activity. The variable and in some cases very low expression of PLC gamma 1 suggests that it may not be the form of PLC that is activated by mIgM. In contrast, PLC alpha and PLC gamma 2 were abundantly expressed in all B cell lines tested. This observation is consistent with the possibility that PLC alpha or PLC gamma 2 is activated by mIgM.  相似文献   

6.
The unfolding story of T cell receptor gamma   总被引:3,自引:0,他引:3  
Antigen-specific, major histocompatibility complex-restricted recognition by classical T cells is mediated by a T cell receptor (TCR) consisting of a disulfide-linked alpha beta heterodimer. During the search for the genes encoding the alpha and beta proteins, a third immunoglobulin-like gene, termed gamma, was uncovered. Like the TCR alpha and beta genes, the TCR gamma gene consists of variable and constant segments that rearrange during T cell development in the thymus. Although the physiological role of TCR gamma remains an enigma, much has been learned with the recent identification of the protein products of this gene family in both mice and humans. The gamma chain is associated with a partner chain, termed delta. The gamma delta heterodimer is associated with an invariant T3 complex, very similar to that associated with the alpha beta heterodimer, and appears predominantly, if not exclusively, on cells with a CD4-, CD8- phenotype both in the thymus and in the periphery. TCR gamma delta is the first T3-associated receptor to appear during thymocyte development and defines a separate T cell lineage distinct from alpha beta-bearing cells. Although TCR alpha beta-bearing cells and TCR gamma delta-bearing cells follow parallel developmental pathways, the diversity of expressed gamma delta receptors is extremely limited relative to that of alpha beta receptors.  相似文献   

7.
The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development.  相似文献   

8.
9.
To identify genes differentially expressed between small cell lung carcinoma (SCLC) cells and non-SCLC cells, mRNA differential display was applied to 3 SCLC cell lines and 6 non-SCLC cell lines. The LAMB3 gene was identified as being expressed only in non-SCLC cells and not in SCLC cells. The LAMB3 gene encodes the laminin beta3 chain, which is a unique component of laminin-5. Laminin-5 is a heterotrimer protein consisting of the alpha3, beta3, and gamma2 chains, and another unique component of laminin-5 is the gamma2 chain encoded by the LAMC2 gene. RT-PCR analysis of the LAMB3 and LAMC2 genes in 45 lung cancer cell lines revealed that both the LAMB3 and LAMC2 genes were co-expressed in 21 of 32 non-SCLC cell lines (66%) but only in one of 13 SCLC cell lines (8%). Coexpression of the LAMB3 and LAMC2 genes was also observed in all 4 cases of primary non-SCLC cells examined but not in the corresponding non-cancerous lung cells. Since alpha6beta4 integrin, the specific laminin-5 binding receptor, is known to be expressed only in non-SCLC cells and not in SCLC cells, it was indicated that laminin-5 is a critical microenvironmental factor for the growth of non-SCLC cells but not of SCLC cells. The differences in the expression of integrins and laminins would be critical factors to distinguish SCLC and non-SCLC cells, and such differences might be associated with the unique biological properties of SCLC cells, including metastatic potential and drug sensitivity.  相似文献   

10.
11.
We have examined the expression of TCR genes in 4-hydroxy-3-nitrophenyl-acetyl (NP)-specific Ts cell hybridomas. Each of three independently isolated hybridomas expressed in-frame TCR alpha-chain rearrangements derived from the original suppressor Ts cell. Different V alpha and J alpha gene segments were rearranged and expressed in each Ts cell line. The only TCR beta-chain expressed in these cells was derived from the BW5147 fusion partner. Expression of the BW5147 beta-chain was found to correlate with cell surface Ag binding, inasmuch as subclones derived from one of the original Ts lines expressed greatly reduced levels of beta-chain mRNA and no longer bound to NP-coupled RBC. Subclones that continued to express beta-chain mRNA did bind to NP-coupled RBC. This suggests that the Ag receptor on Ts hybridomas is a TCR-alpha beta dimer composed of a unique alpha-chain and the BW5147 beta-chain. Ag binding could be modulated by preincubation of Ts hybridoma cells with anti-TCR-alpha beta antibody, thereby supporting this conclusion. Suppressor factor activity was measured in the conditioned media of Ts subclones that differed by 250-fold in levels of beta-chain mRNA expression. No difference in suppressor factor activity was found; conditioned media from these subclones suppressed both plaque-forming cell responses and delayed-type hypersensitivity responses at approximately equivalent dilutions. Suppressor factor activity in the conditioned media of both a beta-chain negative subclone and a beta-chain positive subclone could be absorbed with an antibody that recognizes the TCR alpha-chain, but not with an antibody that recognizes the TCR beta-chain. We conclude that suppressor factor activity in the conditioned media of these Ts hybridomas is not derived from surface TCR-alpha beta receptors, although it does share TCR alpha-chain determinants.  相似文献   

12.
13.
Rearrangement of germ-line genes coding for T and B cell antigen receptor molecules is an early event in lymphoid development which eventually leads to the generation of clonal diversity in receptor-positive lymphocytes. Three T cell-associated rearranging genes have been described. Two, T alpha and T beta, code for the two polypeptide chains that form the T cell receptor heterodimer. The function of the third gene, the gamma-gene (T gamma), is not known. To learn more about the behavior of T gamma during lymphoid ontogeny, we compared rearrangement of T gamma and T beta genes in leukemic cells arrested at varied stages of lymphoid and myeloid development. We analyzed 38 fresh cell lines and 15 established cell lines from a total of 53 leukemic patients. Cells were immunophenotyped with a panel of monoclonal antibodies recognizing T-, B-, or myeloid-associated surface markers. Sixteen T-lineage cases were studied; 15 displayed both T beta and T gamma rearrangements. The exception (germ-line for T beta and T gamma) was an immature CD2(T11)+, CD3(T3)-, CD7(3A1)+, CD1(T6)+, CD5(T101)+ phenotype. Fourteen non-T non-B leukemias were analyzed; eight were germ-line for both T beta and T gamma, four had rearrangements involving both T beta and T gamma, and two were germ-line for T beta and rearranged to T gamma. Four cases with acute biphenotypic leukemia were studied; two had rearrangements of T beta and T gamma, and two were germ-line for both genes. Cells from nonlymphocytic leukemias were studied in 19 cases. All were found to be germ-line for both T beta and T gamma. Fifty-one of 53 genomic DNA samples were concordant for T gamma and T beta rearrangement. These results indicate that rearrangement of T gamma can occur in leukemic cells of B cell as well as T cell precursor origin, as has been reported previously for T beta.  相似文献   

14.
15.
T Saito 《Human cell》1990,3(3):183-192
T cell receptor complex is composed of at least 7 different polypeptides and is one of the most sophisticated receptor. There are two types of T cell receptor (TCR); alpha beta and gamma delta, both of which are composed of a heterodimer and associated with invariant CD3 complexes on the cell surface. T cells expressing alpha beta dimer recognize antigen-peptides in the context of self-MHC molecules, whereas the specificity and function of gamma delta T cells are largely unknown. Gene organization of alpha beta and gamma delta indicates the difference of mechanism to generate diversity. Whereas alpha and beta genes have a large number of V genes, those of gamma and delta genes are limited. However, especially for delta gene, the repertoire is largely produced by junctional diversity. There are increasing data showing new TCR heterodimers; such as beta delta heterodimer in human, beta homodimer in mouse and unknown new heterodimer in chicken, which are expressed on the cell surface in the association with CD3 complex. The characterization of these new receptor dimers and the function of cells expressing these receptors have to be determined. Among CD3 complex, zeta and eta chains are most important for signal transduction after antigen-recognition by TCR. eta gene is recently cloned and now found to be produced by an alternative splicing of a common gene with zeta chains gene. Tyrosine++ phosphorylation of zeta chain seems to be one of the earliest events of T cell activation. Since fyn, one of src oncogene family possessing tyrosine++ kinase function, is co-precipitated with TCR-CD3 complex, fyn seems to be involved in early phosphorylation for T cell activation. Positive and negative selection of thymocytes has been shown to occur via TCR using TCR-transgenic mice model. Molecular mechanism of the selection should be determined.  相似文献   

16.
A20.2J B lymphoma cells have been co-transfected with the A alpha b, A beta b or with the A alpha b, A beta bm12 and neomycin resistance genes. The transfected cell lines constitutively express the I-Ab or I-Abm12 class II molecules at a level comparable with that of the endogenous I-Ad antigen. The I-Ab antigens expressed on three independently transfected B cell clones (A20.Ab.1, A20.Ab.2, and A20.Ab.3) are serologically and functionally indistinguishable from the I-Ab molecules expressed by control H-2bxd B hybridoma cells (LB cells). These transfected cell lines were potent I region-restricted antigen-presenting cells to a large panel of antigen-specific, autoreactive and alloreactive T cell hybridomas, as well as normal T cell clones. There were not significant differences in the efficiency of antigen presentation by the Ia molecules encoded by the transfected, as compared with the endogenous, I-A genes. The expression of a functional I-Ab antigen on the surface of cells transfected with A beta bm12 and A alpha b genes is consistent with previous work that implicated the A beta-chain alone in the bm 12 mutation. Furthermore, because the transfected A20.Ab and A20.Abm12 cells display the serologic and functional properties of normal spleen cells from the wild-type and mutant mouse strains, respectively, it is clear that class II genes do not undergo unexpected and unpredictable alterations after transfection in this system. This system permits us to investigate the structural requirements for interactions between class II major histocompatibility complex antigens, a foreign antigen, and the T cell receptor by in vitro site-directed mutagenesis coupled with DNA-mediated gene transfer.  相似文献   

17.
18.
Although four murine C gamma gene segments (C gamma 1, 2, 3, and 4) are known to exist, the large majority of expressed gamma-chains have been shown to be of the C gamma 1 isotype and no evidence exists for the expression of more than one receptor by gamma delta TCR-bearing cells. We investigated the nature of the TCR expressed on a number of murine dendritic epidermal T cell-derived cell lines by using both Northern blot and immunoprecipitation analyses. One of these CD3+ cell lines (T195) expresses C gamma 4, V gamma 1, and delta mRNA, and its CD3-associated TCR complex can be precipitated by both anti-C gamma 4 and anti-delta sera, indicating that this receptor is a C gamma 4/delta heterodimer. Furthermore, we show that two cell lines (Y245, Y93) express two distinct TCR gamma-chains, one derived from the C gamma 4 locus, whereas the second gamma-chain is probably derived from the C gamma 2 locus. Together with the previous demonstration of C gamma 1/delta TCR on a number of dendritic epidermal T cell lines (DETC), these results indicate that such DETC are capable of expressing a variety of gamma delta TCR and that, in some DETC, isotype exclusion of gamma-chain expression does not occur.  相似文献   

19.
20.
M Capone  F Watrin  C Fernex  B Horvat  B Krippl  L Wu  R Scollay    P Ferrier 《The EMBO journal》1993,12(11):4335-4346
We describe transgenic mice carrying germline variable gene segments associated with either the T cell receptor (TCR) beta or alpha gene enhancers (E beta or E alpha). Transgenic constructs underwent high rates of site-specific rearrangements predominantly in T cells from independent mice. Rearrangements of the E beta-containing transgenes began at different stages of T cell differentiation in embryonic and adult thymus than did the E alpha-containing ones, with a pattern superimposable upon the patterns of TCR beta or TCR alpha gene expression, respectively. We demonstrate that sequences within the TCR beta and TCR alpha gene enhancers confer tissue- and stage-specificity upon the V(D)J recombination events affecting adjacent gene segments. The patterns of transgene expression also gave information on developmental events and lineage relationships (gamma delta versus alpha beta) during T cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号