首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L?1 days?1 reached the maximum cell concentration of 2,393 ± 241 mg L?1, about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.  相似文献   

2.
Batch cultures (8–32 l.) of Chlorella vulgaris and Scenedesmus obliquus and of Anacystis nidulans and Microcystis aeruginosa were grown in media containing 0.001 % KNO3 and at several stages in growth sampled for biomass, total protein, chlorophylls, lipids and fatty acids. With increasing time and decreasing nitrogen concentrations, the biomass of all of the algae increased, whereas the total protein and chlorophyll content dropped. Green and blue-green algae, however, behaved differently in their lipid metabolism. In the green algae the total lipid and fatty acid content as well as the composition of these compounds changed considerably during one growth phase and was dependent on the nitrogen concentration in the media at any given day of growth. More specifically, during the initial stages of growth the green algae produced larger amounts of polar lipids and polyunsaturated C16 and C18 fatty acids. Towards the end of growth, however, these patterns changed in that the main lipids of the green algae were neutral with mainly saturated fatty acids (mostly 18:1 and 16:0). Such changes did not occur in the blue-green algae. These differences between prokaryotic and eukaryotic algae can possibly be explained by the ‘endosymbiont theory’.  相似文献   

3.
Most of the crude glycerol produced globally is generated by biodiesel production, which makes this byproduct an environmental responsibility of the biofuel industries. Among the forms of this compound in use, microalgae cultivation is a promising alternative that may generate a reduction in crude glycerol treatment costs via using it as an organic, carbon-rich substrate in culture media. In this work, the influence of different concentrations of glycerol in the culture medium, the composition of fatty acids and proteins in Spirulina sp. LEB 18 biomass and their effect on its growth were investigated. The fatty acid profile of the biomass was altered, showing a 20% increase in the unsaturated concentration and a 60% reduction in the saturated concentration in the culture supplemented with 0.05 mol L−1 of glycerol compared to those in the control. The addition of the substrate stimulated an increase in its cellular concentration (3.00 g L−1, 0.05 mol L−1), productivity (0.72 g L−1 d−1, 0.05 mol L−1) and its protein production (69.78% w w−1, 0.05 mol L−1).  相似文献   

4.
Efficient cryopreservation conditions for the edible alkalophilic cyanobacterium Arthrospira (Spirulina) platensis were investigated using a model strain A. platensis NIES-39. As a result, it was found that more than 60% of cells were viable upon thawing, when they had been frozen at a cooling rate of approximately ?1 °C min?1 in the presence of 10% (v/v) dimethyl sulfoxide. Further examination with other Arthrospira strains showed that many of them had strain-dependent optimal conditions for cryopreservation. For example, the best freezing conditions for A. platensis SAG 21.99 were snap-freezing in liquid nitrogen in the presence of 5% (v/v) dimethyl sulfoxide, while they were slow cooling at approximately ?1 °C min?1 in the presence of 10% (v/v) methanol for A. platensis NIES-46, NIES-2308 and UTEX 1926. The variety of successful cryopreservation conditions presented in this study is useful when attempting to cryopreserve various Arthrospira strains.  相似文献   

5.
Factors indicating culture status of two Spirulina platensis strains were monitored in a batch mode cultivation for 36 days. Changing mode in all factors showed a common turning point, indicating shift of cell or culture status. Mean biomass productivity was highly sustained until day 22, chlorophyll a concentration peaked on day 22, pH value was >12 on day 22, coil number was abruptly shortened on day 22, and floating activity was sustained at greater than 79% after day 22, indicating that day 22 is a criterion reflecting phase-transfer in cell physiology in a batch culture system. Many of these changes may have been caused by increased pH, suggesting that pH control is essential for mass production of S. platensis. Fluctuations in floating activity were likely induced by the number of cellular gas vacuoles. Consequently, coil number per trichome and floating activity of S. platensis could readily act as simple indicators for determination of culture status or harvesting time of cells.  相似文献   

6.
The rheological behavior of an Arthrospira culture was studied from low to high biomass concentration. Two tubular undulating row photobioreactors (TURP-5r and TURP-10r), with a very short light path of 1.0 cm, were used during batch growth. In TURP-5r, the biomass concentration increased to 14.5 g(dw) L(-1), and alterations of the physical properties and hydrodynamic behavior occurred as a result. In the past, the rheological characteristics of photosynthetic-microbe cultures were rarely investigated because of the low biomass concentration attained in the systems. Developing closed photobioreactor technologies, the optimum biomass concentration rises and the viscosity, the generalized Reynolds number (N'(Re)), and the power required for culture recycling are also subject to alteration. Starting from a biomass concentration of 4.1 g(dw) L(-1), the Arthrospira culture already exhibits the characteristics of a non-Newtonian fluid. As a result of culture recycling from 2.0 to 20.5 g(dw) L(-1) and an available power of 1.67 W row(-1), we demonstrated that N'(Re) is reduced from 6265 to 1148. Our experimental results showed that N'(Re) of 2345 can be reached only at a cell concentration below 11.1 g(dw) L(-1), while at a cell concentration below 4.1 g(dw) L(-1) N'(Re) = 4080 was reached. The power consumption (P(c)) for culture recycling increased noticeably when the cell concentration rose; the highest P(c) increase attained was from 2.0 to 4.1 g(dw) L(-1). This is the range within which the Arthrospira culture changes from a Newtonian to a non-Newtonian fluid.  相似文献   

7.
To reduce CO2 emissions from alcoholic fermentation, Arthrospira platensis was cultivated in tubular photobioreactor using either urea or nitrate as nitrogen sources at different light intensities (60 μmol m?2 s?1?≤?I?≤?240 μmol m?2 s?1). The type of carbon source (pure CO2 or CO2 from fermentation) did not show any appreciable influence on the main cultivation parameters, whereas substitution of nitrate for urea increased the nitrogen-to-cell conversion factor (Y X/N ), and the maximum cell concentration (X m ) and productivity (P X ) increased with I. As a result, the best performance using gaseous emissions from alcoholic fermentation (X m ?=?2,960?±?35 g m?3, P X ?=?425?±?5.9 g m?3 day?1 and Y X/N ?=?15?±?0.2 g g?1) was obtained at I?=?120 μmol m?2 s?1 using urea as nitrogen source. The results obtained in this work demonstrate that the combined use of effluents rich in urea and carbon dioxide could be exploited in large-scale cyanobacteria cultivations to reduce not only the production costs of these photosynthetic microorganisms but also the environmental impact associated to the release of greenhouse emissions.  相似文献   

8.
A membrane photobioreactor was designed, implemented and used to grow the cyanobacterium Arthrospira platensis PCC 8005 in batch mode. Growth was followed directly by monitoring optical density and indirectly by measuring pressure increase due to the oxygen produced and separated from the liquid phase by diffusion through a hydrophobic membrane, and pH increase due to carbon consumption. When the pressure attained an upper limit, valves opened automatically, and the oxygen in the gas chamber was flushed out with nitrogen. As expected, two growth phases were observed, a short exponential phase followed by a linear phase, indicating limitation by light transfer. Growth rate during the second phase was measured easily and accurately, and consistency of optical density, pressure and pH data values was checked using a model of the system. Pressure measurement was found best suited to monitoring and measuring growth rate in space in terms of accuracy, precision and reliability.  相似文献   

9.
Arthrospira platensis, a blue‐green alga, is a popular nutraceutical substance having potent antioxidant properties with potential anti‐carcinogenic activities. The aim of our study was to assess the possible anti‐angiogenic effects of A platensis in an experimental model of pancreatic cancer. The effects of an A platensis extract were investigated on human pancreatic cancer cells (PA‐TU‐8902) and immortalized endothelial‐like cells (Ea.hy926). PA‐TU‐8902 pancreatic tumours xenografted to athymic mice were also examined. In vitro migration and invasiveness assays were performed on the tested cells. Multiple angiogenic factors and signalling pathways were analysed in the epithelial, endothelial and cancer cells, and tumour tissue. The A platensis extract exerted inhibitory effects on both migration and invasion of pancreatic cancer as well as endothelial‐like cells. Tumours of mice treated with A platensis exhibited much lesser degrees of vascularization as measured by CD31 immunostaining (P = .004). Surprisingly, the VEGF‐A mRNA and protein expressions were up‐regulated in pancreatic cancer cells. A platensis inhibited ERK activation upstream of Raf and suppressed the expression of ERK‐regulated proteins. Treatment of pancreatic cancer with A platensis was associated with suppressive effects on migration and invasiveness with various anti‐angiogenic features, which might account for the anticancer effects of this blue‐green alga.  相似文献   

10.
To obtain amino acid-analogue-resistant mutants the wild strain A9 of Arthrospira platensis was mutated by ethylmethane sulfonate (EMS). Mutagenic effects of strain A9 by EMS were studied. The experimental results indicated that the survival rate curve of strain A9 took a typical “exponential shape” with lethal dosage of EMS being 1 %. The survival of A9 strain was 13.2 % when treated with 0.4 % of EMS, and the resistant mutation rates to two amino acid analogues, ρ-fluorophenylalanine (FPA) and L-canavanine sulphate (CS), were greatly increased with the highest rates being at 4.9 × 10?4 and 3.24 × 10?4, respectively. By repeated screening, two stable mutants resistant to amino acid analogues, A9f resistant to FPA and A9c resistant to CS, were obtained. Resistances of the two mutants to corresponding amino acid-analogues were both significantly increased. Compared with their parent strain A9, A9f appeared larger than A9 performance in filament diameter, spiral diameter, spiral pitch, filament length and spiral number, and A9c showed much longer length and spiral pitch than those of the initial strain. Analysis results on amino acids compositions and contents showed that both two mutants accumulated quite higher concentration of amino acids in cells. The two mutants might be excellent high amino acids producing strain. By this means two useful mutants with stable genetic makers for further genetic study of A. platensis were obtained, which laid a good foundation for further study on the transformation of A. platensis.  相似文献   

11.
The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.  相似文献   

12.
13.
Kharchuk  I. A.  Rylkova  O. A.  Beregovaya  N. M. 《Microbiology》2022,91(6):704-712
Microbiology - The biochemical composition of Arthrospira (Spirulina) platensis (Nordstedt) Gomont after long-term storage in the state of anhydrobiosis (4 years, 17 years) was determined by the...  相似文献   

14.
This study describes the response of Arthrospira platensis to a variety of temperature conditions as reflected in variations of photosynthetic parameters, pigmentation, and biomass productivity in indoor photobioreactor (PBR) cultivations. These experiments are designed to better understand the impact of temperature, seasonal variations, and acclimation effects on outdoor biomass production. The irradiance level and temperature range (20–39°C) are chosen to enable modeling of semi-continuous operation of large-scale outdoor PBR deployments. Overall, the cultivations are quite stable with some pigment-related instabilities after prolonged high-temperature exposure. Changes in productivity with temperature, as reflected in measured photosynthetic parameters, are immediate and mainly attributable to the temperature dependence of the photosaturation parameter, a secondary factor being variation in pigment content on a longer time scale corresponding to turnover of the culture population. Though pigment changes are not accompanied by significant changes in productivity, prolonged exposure at 35°C and above yields a clear degradation in performance. Productivities in a semi-continuous operation are quantitatively reproduced with a productivity model incorporating photosynthetic parameters measured herein. This study confirms the importance of temperature for biomass and pigment production in Arthrospira cultivations and provides a basis for risk assessments related to temperature mitigation for large-scale outdoor cultivations.  相似文献   

15.
Phycoferritin from the nutritionally important blue-green alga Arthrospira platensis has been isolated, by application of conventional biochemical techniques. The molecular mass, yield, iron and total neutral carbohydrate contents of the purified protein were 470 kDa, 0.044 mg g−1 of Arthrospira, 1.4 and 20%, respectively. The iron content was much lower when compared to bacterial and mammalian ferritins. The P: Fe ratio of Arthrospira phycoferritin was 1: 3.5, a value akin to bacterioferritins. Native gel-electrophoresis revealed the presence of isoforms. Subunit analysis by SDS-PAGE and Western blotting showed a protein subunit with an apparent molecular mass of 18 kDa. Oligomeric forms of the protein subunit were also present. The phycoferritin exhibited cross-reactivity with anti-pea seed ferritin suggesting phylogenetic relationship with that of higher plants. Carbohydrate analysis of phycoferritin by GC-MS revealed the presence of sugars such as galactose, glucose and mannose similar to that of mammalian ferritins. Interestingly, the analysis also revealed sugars such as rhamnose, xylose and talose, which has not been reported in the structure of ferritins. Except for very low histidine content in phycoferritin, the rest of the amino acid composition resembled to ferritins of other species. UV-visible spectral analysis of the phycoferritin revealed the presence of haem groups, a property characteristic of bacterioferritins. The fluorescence intensity of phycoferritin was higher than equine spleen ferritin. Circular dichroic spectra revealed a lower degree of helicity.  相似文献   

16.
The consequences of the addition of CO2 (1%) in cultures of S. platensis are examined in terms of biomass yield, cell composition and external medium composition. CO2 enrichment was tested under nitrogen saturating and nitrogen limiting conditions. Increasing CO2 levels did not cause any change in maximum growth rate while it decreased maximum biomass yield. Protein and pigments were decreased and carbohydrate increased by high CO2, but the capability to store carbohydrates was saturated. C:N ratio remained unchanged while organic carbon released to the external medium was enhanced, suggesting that organic carbon release in S. platensis is an efficient mechanism for the maintenance of the metabolic integrity, balancing the cell C:N ratio in response to environmental CO2 changes. CO2 affected the pigment content: Phycocyanin, chlorophyll and carotenoids were reduced in around 50%, but the photosynthetic parameters were slightly changed. We propose that in S. platensis CO2 could act promoting degradation of pigments synthetised in excess in normal CO2 conditions, that are not necessary for light harvesting. Nitrogen assimilation was significantly not affected by CO2, and it is proposed that the inability to stimulate N assimilation by CO2 enrichment determined the lack of response in maximum growth rate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Reassessement of bioenergetic growth yield of Arthrospira platensis was performed by using continuous culture under both autotrophic and mixotrophic conditions. Continuous culture was carried out at dilution rates of 0.017, 0.023 and 0.030 h–1. Under these dilution rates bioenergetic yields ranged between 4.45–6.03 × 10–3 g biomass kJ–1 and between 5.42–7.46 × 10–3 g biomass kJ–1, under autotrophic and mixotrophic conditions respectively. A maximum bioenergetic yield of 8.1 × 10–3 g biomass kJ–1 using an autotrophic culture can be calculated. Pigment accumulation (chlorophyll a and carotenoids) may be related to light irradiance, reaching a maximum pigment concentration under light saturation irradiance. Phycocyanin concentration increased during light limitation.  相似文献   

18.
Liu  Cui  Li  Yanhua  Chen  Zheng  Yuan  Li  Liu  Haokun  Han  Dong  Jin  Junyan  Yang  Yunxia  Hu  Qiang  Zhu  Xiaoming  Xie  Shouqi 《Journal of applied phycology》2021,33(4):2251-2259

The cyanobacterium Arthrospira platensis is regarded as a potential future source of food for humans due to its superior nutritional value compared with many conventional crops. An 8-week feeding trial was conducted to evaluate nutritional and pigmentation effects of whole A. platensis, defatted A. platensis and its lipid extracts in diets for the yellow catfish Pelteobagrus fulvidraco. Four percent whole A. platensis (AP4), 0.4% A. platensis lipid extracts (AL0.4), and 4% defatted A. platensis (AR4) were used as experimental diets, and a diet without any A. platensis was as the control diet (AP0). The AP4 and AL0.4 groups had no effects on the growth performance and feed utilization in yellow catfish; however, the AR4 group was significantly lower than the AP0 group in terms of specific growth rate and feed efficiency (P < 0.05). AP4 and AL0.4 groups significantly increased the body protein of fish (P < 0.05). The skin color was significantly improved in the AP4 and AL0.4 groups, as well as the fish skin and plasma lutein contents (P < 0.05). Correlations between skin color and the lutein contents in liver and muscles were weak, whereas the correlations between skin color and the lutein contents in skin and plasma were significant and strong. The results suggest that whole A. platensis and its lipid extracts can be functional additives to improve whole body protein and skin color of fish, while defatted A. platensis showed no advantage in yellow catfish diets.

  相似文献   

19.
Present study aims to optimize the production of starch and total carbohydrates from Arthrospira platensis. Growing concerns toward unprecedented environmental issues associated with plastic pollution has created a tremendous impetus to develop new biomaterials for the production of bioplastic. Starch-based biopolymers from algae serve as sustainable feedstock for thermoplastic starch production due to their abundant availability and low cost. A. platensis was cultivated in Zarrouk's medium at 32 ± 1°C and exposed to red light with a photoperiod of 12:12 hr light/dark. Growth kinetics studies showed that the maximum specific growth rate (μmax) obtained was 0.059 day−1 with the doubling time (td) of 11.748 days. Subsequently, Zarrouk's medium with different concentrations of sulfur, phosphorus and nitrogen was prepared to establish the nutrient-limiting conditions to enhance the accumulation of starch and total carbohydrates. In this study, the highest starch accumulated was 6.406 ± 0.622 mg L−1 under optimized phosphorus limitation (0.025 g L−1) conditions. Nitrogen limitation (0.250 g L−1) results demonstrated significant influenced (p < 0.05) on total carbohydrates (67.573 ± 2.893 mg L−1) accumulation in A. platensis. The starch accumulation in A. platensis was significantly affected (p < 0.05) by phosphorus limitation (0.0025 g L−1). Subsequently, the optimized phosphorus concentration was coupled with mixotrophic cultivation to further enhance the starch accumulation. The results obtained indicated that, the starch (11.426 ± 0.314 mg L−1) and carbohydrates (43.053 ± 2.986 mg L−1) concentration obtained was significantly high (p < 0.05) under mixotrophic cultivation. Therefore, it shown that nutrient limitation and mixotrophic cultivation are viable strategies to enhance the accumulation of starch and total carbohydrates in A. platensis.  相似文献   

20.
一步柱层析纯化螺旋藻藻蓝蛋白   总被引:1,自引:0,他引:1  
采用硫酸铵盐析结合疏水层析技术分离纯化螺旋藻中的藻蓝蛋白.试验结果表明,在磷酸盐缓冲体系下藻蓝蛋白粗提液经1.25 mol/L硫酸铵盐析处理后离心脱气,只需采用一步Macro-Prep Methyl 疏水层析,藻蓝蛋白的纯度(A620/A280)可提高到4.017,回收率为19.38%.特征吸收峰和荧光光谱证实纯化后的产物符合藻蓝蛋白的性质,Native-PAGE电泳只出现单一染色带,表明纯化得到的藻蓝蛋白是均一的;SDS-PAGE电泳出现分子量为15.4 kDa、17.3 kDa的2条染色带,分别为藻蓝蛋白的α亚基与β亚基.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号