首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global comparisons suggest that rates of N fixation in tropical rain forests may be among the highest on earth. However, data supporting this contention are rare, and the factors that regulate N fixation within the biome remain largely unknown. We conducted a full-factorial (N × P) fertilization experiment in two lowland tropical rain forests in Costa Rica to explore the effects of nutrient availability on rates of free-living N fixation in leaf litter and soil. P fertilization significantly increased N fixation rates in both leaf litter and soil, and the effect was dependent on sampling date. Fertilization with N did not affect rates of N fixation at any time. In addition, variation in N fixation rates measured in unfertilized plots at four sampling time points suggested seasonal variability in N fixation: leaf litter N fixation ranged from 0.36 kg/ha/yr in the dry season to 5.48 kg/ha/yr in the wet season. Soil N fixation showed similar patterns ranging from a dry season low of 0.26 kg/ha/yr to a wet season high of 2.71 kg/ha/yr. While the observed temporal variability suggests potential climatic control over free-living N fixation in these forests, data suggest that neither soil nor leaf litter moisture alone regulate N fixation rates. Instead, we hypothesize that a combination of ample C availability, low leaf litter N:P ratios, and high rainfall coincide during the latter portions of the rainy season and drive the highest free-living N fixation rates of the year.  相似文献   

2.
Nitrogen (N) fixed by termites was evaluated as a N input to decomposition processes in two tropical forests, a dry deciduous forest (DDF) and the neighboring dry evergreen forest (DEF), Thailand. A diverse group of termite species were assayed by acetylene reduction method and only the wood/litter-feeding termites were found to fix N. More intensive samplings of two abundant species, Microcerotermes crassus and Globitermes sulphureus, were done across several seasons, suggesting N fixation rates of 0.21 and 0.28 kg ha−1 y−1 by termites in the DDF and DEF, respectively. Also, estimates of asymbiotic N fixation rates were 0.75 and 3.95 kg ha−1 y−1. N fixed by termites and by asymbiotic fixers is directly supplied to decomposers breaking down dead plant material and could be a major source of their N. N fixed by termites was 7–22% of that fixed by termites and asymbiotic fixers. Although N fixed by termites is a small input compared to other inputs, this N is likely important for decomposition processes.  相似文献   

3.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

4.
Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest’s nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change.  相似文献   

5.
生物固氮作用机理   总被引:1,自引:0,他引:1  
李佳格  徐继 《植物学报》1997,14(3):1-13
  相似文献   

6.
We conducted a year‐long field experiment to investigate how nitrogen addition affected decomposition of Piscidia piscipula and Gymnopodium floribundum along a precipitation gradient in the Yucatan Peninsula, Mexico. Nitrogen addition did not affect decomposition rates at the drier sites. However, fertilization at the wettest site increased the decomposition of Gymnopodium litter and decreased the decomposition of Piscidia litter. Water‐soluble carbon and lignin, and water‐soluble carbon and nitrogen concentrations were the best predictors of decomposition for Gymnopodium and Piscidia litters, respectively. We conclude that the effects of nitrogen addition on decomposition will vary from site to site as a function of mean annual precipitation, inherent soil fertility, and species identity.  相似文献   

7.
Long-Term Nitrogen Additions and Nitrogen Saturation in Two Temperate Forests   总被引:50,自引:6,他引:50  
This article reports responses of two different forest ecosystems to 9 years (1988–96) of chronic nitrogen (N) additions at the Harvard Forest, Petersham, Massachusetts. Ammonium nitrate (NH4NO3) was applied to a pine plantation and a native deciduous broad-leaved (hardwood) forest in six equal monthly doses (May–September) at four rates: control (no fertilizer addition), low N (5 g N m-2 y-1), high N (15 g N m-2 y-1), and low N + sulfur (5 g N m-2 y-1 plus 7.4 g S m-2 y-1). Measurements were made of net N mineralization, net nitrification, N retention, wood production, foliar N content and litter production, soil C and N content, and concentrations of dissolved organic carbon (DOC) and nitrogen (DON) in soil water. In the pine stand, nitrate losses were measured after the first year of additions (1989) in the high N plot and increased again in 1995 and 1996. The hardwood stand showed no significant increases in nitrate leaching until 1995 (high N only), with further increases in 1996. Overall N retention efficiency (percentage of added N retained) over the 9-year period was 97–100% in the control and low N plots of both stands, 96% in the hardwood high N plot, and 85% in the pine high N plot. Storage in aboveground biomass, fine roots, and soil extractable pools accounted for only 16–32% of the added N retained in the amended plots, suggesting that the one major unmeasured pool, soil organic matter, contains the remaining 68–84%. Short-term redistribution of 15N tracer at natural abundance levels showed similar division between plant and soil pools. Direct measurements of changes in total soil C and N pools were inconclusive due to high variation in both stands. Woody biomass production increased in the hardwood high N plot but was significantly reduced in the pine high N plot, relative to controls. A drought-induced increase in foliar litterfall in the pine stand in 1995 is one possible factor leading to a measured increase in N mineralization, nitrification, and nitrate loss in the pine high N plot in 1996. Received 2 April 1999; Accepted 29 October 1999.  相似文献   

8.
9.
生物固氮及在可持续农业中的应用   总被引:3,自引:0,他引:3  
氮是限制农业生产的重要营养元素.生物固氮指某些原核生物能利用体内的固氮酶将空气中的氮气还原为氨,为植物生长提供氮素.自然界中存在多种具有固氮能力的微生物,依据其固氮方式分为自生固氮、共生固氮和联合固氮三种类型.联合固氮茵通过趋化定殖在植物根表,并生长、固氮.  相似文献   

10.
Zheng  Mianhai  Zhang  Wei  Luo  Yiqi  Wan  Shiqiang  Fu  Shenglei  Wang  Senhao  Liu  Nan  Ye  Qing  Yan  Junhua  Zou  Bi  Fang  Chengliang  Ju  Yuxi  Ha  Denglong  Zhu  Liwei  Mo  Jiangming 《Ecosystems》2019,22(5):955-967
Ecosystems - Asymbiotic nitrogen (N) fixation (ANF) is an important source of N in pristine forests and is predicted to decrease with N deposition. Previous studies revealing N fixation in response...  相似文献   

11.
外源供氮水平对大豆生物固氮效率的影响   总被引:2,自引:0,他引:2  
采用稳定性同位素15N自然丰度(15N natural abundance)技术,以小麦为参照植物,研究了盆栽条件下,在外源供氮0、0.8、2.0、4.0 mmol·L-1水平下大豆的生物固氮百分率以及生物固氮数量对植物氮的贡献.结果显示:(1)0~2.0 mmol·L-1外源供氮可显著提高大豆的生物量和固氮百分率,且于2.0 mmol·L-1处理下地上生物量最高,达104 g·m-2,比CK增加了48%;(2)在0.8 mmol·L-1的供氮水平下大豆生物固氮量最高,为1.318 g·m-2,占大豆植株总吸氮量的70.4%,而在4.0 mmol·L-1供氮水平下生物固氮量仅占植株总吸氮量的44%;随供氮水平的升高,大豆生物固氮量占总吸氮量的比重下降,说明在高水平外源氮下,大豆生物固氮能力受到抑制;(3)大豆生物固氮百分率、固氮数量及吸氮数量与地上生物量间均呈显著正相关关系.结果表明,应用稳定性15N同位素技术可以定量大豆的生物固氮效率,根瘤菌接种配合低浓度外源氮有利于大豆生物固氮潜能的释放,对提高大豆产量、减少化肥投入有积极的指导意义.  相似文献   

12.
Patterns of co‐occurrence of species are increasingly used to examine the contribution of biotic interactions to community assembly. We assessed patterns of co‐occurrence at four scales, in two types of tropical cloud forests in Hainan Island, China (tropical montane evergreen forests, TMEF and tropical dwarf forests, TDF) that varied significantly in soil nutrients and temperature. We tested if the patterns of co‐occurrence changed when we sorted species into classes by abundance and diameter at breast height (dbh). Co‐occurrence differed by forest type and with plot size, with significant species aggregation observed across larger plots in TDF and patterns of species segregation observed in smaller plots in TMEF. Analyses of differential abundance and dbh classes also showed that smaller plots in TMEF tend to have negative co‐occurrence patterns, but larger plots in TDF tend to show patterns of aggregation, suggesting competitive and facilitative interactions. This underscores the scale‐dependence of the processes contributing to community assembly. Furthermore, it is consistent with predictions of the stress gradient hypothesis that facilitation will be most important in biological systems subject to abiotic stress, while competition will be more important in less abiotically stressful habitats. Our results clearly demonstrate that these two types of tropical cloud forest exhibit different co‐occurrence patterns, and that these patterns are scale‐dependent, though independent of plant abundance and size class.  相似文献   

13.
Phaseolus vulgaris cv. Glamis plants grown at 7 and 28 W m–228 W m–2 in controlled environment cabinets showed copiousnodulation and high levels of acetylene reducing activity. Earlydifferences in nodulation were apparent before differences inphotosynthesis and were attributed to an effect of far-red lighton nodule development. Total plant nitrogen content was greater at 28 W m–2 thanat 7 W –2 but nitrogen content as a percentage of d. wtwas greater at the lower irradiance level. Total acetylene reducing activity (nmol. min–1 root–1)was greater at 28 W m–2 than at 7 W –2, but therewas no irradiance effect on specific activity (nmol. min–1g d. wt of pink nodules–1 or nmol. min–1 pink nodule–1). Transfer of 40-day-old plants from 7 W m–2 to 28 W m–2resulted in increased nodulesize(due toincreased size of infectedcells), accompanied by increased total, but not specific, acetylenereducing activity. Transfer of plants from 28 W m–2 to 7 W m–2 resultedin a fall of total acetylene reducing activity within 24 h,and senescence of large nodules. Specific acetylene reducingactivity was unaffected The results are interpreted as an effect of light on the productionof nitrogen fixing tissue, rather than on nitrogenase activity.  相似文献   

14.
At two sites at the extreme ends of a soil development chronosequence in Hawaii, we investigated whether forest responses to fertilization on young soils were similar to those on highly weathered soils and whether the initial responses were maintained after 6–11 years of fertilization. Aboveground net primary production (ANPP) was increased by nitrogen (N) application at the 300-year-old site and phosphorus (P) application at the 4.1-million-year-old site, thus confirming earlier results and their designations as N- and P-limited forests. Along with ANPP, application of the limiting element consistently increased leaf area index (LAI), radiation conversion efficiency (RCE), and foliar and litter nutrient concentrations. Fertilization did not consistently alter N or P retranslocation from senescent leaves at either site, but a comparison with other sites on the chronosequence and with a common-garden study suggests that there is a genetic basis for low foliar and litter nutrients and higher retranslocation at infertile sites vs more fertile sites. N limitation appears to be expressed as limitation to carbon gain, with long leaf lifespans and high leaf mass per area. P limitation results in high P-use efficiency and disproportionally large increases in P uptake after fertilization; a comparison with other studies indicates large investments in acquiring and storing P. Although the general responses of ANPP, LAI, and RCE were similar for the two sites, other aspects of nutrient use differ in relation to the physiological and biogeochemical roles of the two elements. Received 2 June 2000; Accepted 4 April 2001.  相似文献   

15.
Soil redox plays a key role in regulating biogeochemical transformations in terrestrial ecosystems, but the temporal and spatial patterns in redox and associated controls within and across ecosystems are poorly understood. Upland humid tropical forest soils may be particularly prone to fluctuating redox as abundant rainfall limits oxygen (O2) diffusion through finely textured soils and high biological activity enhances O2 consumption. We used soil equilibration chambers equipped with automated sensors to determine the temporal variability in soil oxygen concentrations in two humid tropical forests with different climate regimes. We also measured soil trace gases (CO2, N2O, and CH4) as indices of redox-sensitive biogeochemistry. On average, the upper elevation cloud forest had significantly lower O2 concentrations (3.0 ± 0.8%) compared to the lower elevation wet tropical forest (7.9 ± 1.1%). Soil O2 was dynamic, especially in the wet tropical forest, where concentrations changed as much as 10% in a single day. The periodicity in the O2 time series at this site was strongest at 16 day intervals and was associated with the hourly precipitation. Greenhouse gas concentrations differed significantly between sites, but the relationships with soil O2 were consistent: O2 was negatively related to both CO2 and CH4 and positively related to N2O. These results are among the first to quantify the temporal and spatial scale of variability in soil redox in humid tropical forests, and show that the timing of precipitation plays a strong role in biogeochemical cycling on the scale of hours to weeks.  相似文献   

16.
Although tropical wet forests are generally more diverse than dry forests for many faunal groups, few studies have compared bat diversity among dry forests. I compared ground level phyllostomid bat community structure between two tropical dry forests with different precipitation regimes. Parque National Palo Verde in northwestern Costa Rica represents one of the wettest tropical dry forests (rainfall 1.5 m/yr), whereas the Chamela‐Cuixmala Biosphere Reserve on the Pacific coast of central Mexico represents one of the driest (750 mm/yr). Mist net sampling was conducted at the two study sites to compare changes in ground level phyllostomid bat community structure between regions and seasons. Palo Verde was more diverse than Chamela and phyllostomid species showed low similarity between sites (Classic Jaccard = 0.263). The distinct phyllostomid communities observed at these two dry forest sites demonstrates that variants of tropical dry forest can be sufficiently different in structure and composition to affect phyllostomid communities. At both dry forest sites, abundance of the two most common foraging guilds (frugivores and nectarivores) differed between seasons, with greatest numbers of individuals captured coinciding with highest chiropterophilic resource abundance.  相似文献   

17.
KJAeR  SOREN 《Annals of botany》1992,70(1):11-17
The patterns of plant growth and N2 fixation capability in Pachyrhizusahipa (Wedd) Parodi inoculated with BradyrhizobiumPachyrhizusSpec 1’ strains (Lipha Tech) were investigated in a zero-Nculture system under greenhouse conditions The P ahipa plantis day-neutral with respect to reproductive development Competitionoccurred between the two storage organs (legume and tuber) andprevented high tuber yield in P ahipa The symbiotic effectivenessof the association was high, as the profuse nodulation providedthe inoculated plants with adequate amounts of N Nodules werepresent throughout the cycle of P ahipa The change in rate ofN2 fixation (RNF) and relative growth rate (RGR) was almostparallel during ontogenesis The developmental pattern of N2fixation activity revealed that 65% of total N2 fixation occurredafter N began to accumulate in the reproductive (pod wall plusseed) tissue During pod filling allocation of N compounds tothe seeds exceeded N2 fixation, the pod walls being the primarysource of redistributed N, followed by the leaves. Pachyrhizus ahipa (Wedd) Parodi, ahipa, tuber crop, dinitrogen fixation, dry matter, N partitioning, reproductive growth  相似文献   

18.
Studies in unpolluted, old-growth forests in the coastal range of southern Chile (42°30′S) can provide a baseline for understanding how forest ecosystems are changing due to the acceleration of nitrogen (N) inputs that has taken place over the last century. Chilean temperate forests, in contrast to their northern hemisphere counterparts, exhibit extremely low losses of inorganic N to stream waters. The objectives of this study were (a) to determine whether low inorganic N outputs in these forests were due to low rates of N mineralization or nitrification, and (b) to examine how biodiversity (defined as number of dominant tree species) and forest structure influence N mineralization and overall patterns of N cycling. Studies were conducted in a species-poor, conifer-dominated (Fitzroya cupressoides) forest with an even-aged canopy, and in a mixed-angiosperm (Nothofagus nitida) forest with a floristically more diverse and unstable canopy. Nitrogen mineralization rates measured in laboratory assays varied seasonally, reaching 6.0 μg N/g DW/day in both forests during late summer. Higher values were related to higher microbial activity, larger pools of labile inorganic N, and increased fine litter inputs. Field assays, conducted monthly, indicated positive net flux from N mineralization mainly from December to January in both forests. Annual net flux of N from mineralization varied from 20 to 23 kg/ha/year for the Fitzroya forest and from 31 to 37 kg/ha/year for the Nothofagus forest. Despite low losses of inorganic N to streams, N mineralization and nitrification are not inhibited in these forests, implying the existence of strong sinks for NO3 in the ecosystem. Field N mineralization rates were two times higher in the Nothofagus forest than in the Fitzroya forest, and correlated with greater N input via litterfall, slightly higher soil pH, and narrower carbon (C)–nitrogen ratios of soils and litter in the former. Differences in N mineralization between the two forest types are attributed to differences in biotic structure, stand dynamics, and site factors. Median values of net N mineralization rates in these southern hemisphere forests were lower than median rates for forests in industrialized regions of North America, such as the eastern and central USA. We suggest that these high N mineralization rates may be a consequence of enhanced atmospheric N deposition.  相似文献   

19.
Species diversity, host specificity and species turnover among phytophagous beetles were studied in the canopy of two tropical lowland forests in Panama with the use of canopy cranes. A sharp rainfall gradient occurs between the two sites located 80 km apart. The wetter forest is located in San Lorenzo Protected Area on the Caribbean side of the isthmus, and the drier forest is a part of the Parque Natural Metropolitano close to Panama City on the Pacific slope. Host specificity was measured as effective specialization and recorded by probability methods based on abundance categories and feeding records from a total of 102 species of trees and lianas equally distributed between the two sites. The total material collected included more than 65,000 beetles of 2462 species, of which 306 species were shared between the two sites. The wet forest was 37% more species rich than the dry forest due to more saproxylic species and flower visitors. Saproxylic species and flower visitors were also more host-specific in the wet forest. Leaf chewers showed similar levels of species richness and host specificity in both forests. The effective number of specialized species per plant species was higher in the wet forest. Higher levels of local alpha- and beta-diversity as well as host specificity based on present data from a tropical wet forest, suggests higher number of species at regional levels, a result that may have consequences for ecological estimates of global species richness.  相似文献   

20.
We show in laboratory and field investigations that in the short‐term seagrasses obtain most of their required nitrogen from the degradation of seagrass leaves, rather than degradation of leaves exported from adjacent mangroves. Mangrove forests at our Thailand site retain the majority of their nutrients, and therefore potentially buffer seagrasses from nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号