首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
The increase in spring temperatures in temperate regions over the last two decades has led to an advancing spring phenology, and most resident birds have responded to it by advancing their onset of breeding. The pied flycatcher (Ficedula hypoleuca) is a long‐distance migrant bird with a relatively late onset of breeding with respect to both resident birds and spring phenology in Europe. In the present correlational study, we show that some fitness components of pied flycatchers are suffering from climate change in two of the southernmost European breeding populations. In both montane study areas, temperature during May increased between 1980 and 2000 and an advancement of oak leafing was detected by using the normalized difference vegetation index (NDVI) to assess tree phenology. This might result in an advancement of the peak in availability of caterpillars, the main prey during the nestling stage. Over the past 18 yr, the time of egg laying and clutch size of pied flycatchers were not affected by the increase in spring temperatures in these Mediterranean populations. However, this increase seems to have an adverse effect on the reproductive output of pied flycatchers over the same period. Our data suggest that the mismatch between the timing of peak food supply and nestling demand caused by recent climate change might result in a reduction of parental energy expenditure that is reflected in a reduction of nestling growth and survival of fledged young in our study populations. The data seem to indicate that the breeding season has not shifted and it is the environment that has shifted away from the timing of the pied flycatcher breeding season. Mediterranean pied flycatchers were not able to advance their onset of breeding, probably, because they are constrained by their late arrival date and their restricted high altitude breeding habitat selection near the southern border of their range.  相似文献   

2.
The separation of abiotic and biotic factors affecting populations and communities is an important step in understanding how climate change can influence ecological processes, but quantifying their relative contribution to community changes is a challenge. We assessed the effect of temperature and species interactions on the population dynamics of a forest bird community with a hierarchical dynamic population model in a Bayesian framework. We used a long‐term time‐series (1956–2012) of four secondary cavity‐nesting birds with similar food and nesting requirements but different migration habits, to analyse the effects of the four species population size and the local weather fluctuations on each species’ population dynamics. We found clear evidence of a negative effect of two resident species (blue tit and great tit) on a long‐distance migrant (pied flycatcher). Among the residents we only found a competition effect of the great tit on the marsh tit. The birds showed opposite responses to weather: the pied flycatcher favoured colder springs whereas the blue tit and great tit favoured warmer springs. Although alternative mechanisms cannot be ruled out, our results suggest that the resident species (blue tit and great tit) could adjust to increasing spring temperature while the migrant species (pied flycatcher) could not, leading progressively to the exclusion of the pied flycatcher from the area. These results point out the potential role of competitive interactions by providing insightful clues, call for refined research, and support recent efforts to include population dynamics in species distribution models.  相似文献   

3.
Climate change could affect resource competition between resident and migratory bird species by changing the interval between their onsets of breeding or by altering their population densities. We studied interspecific nest-hole competition between resident great tits and migrant pied flycatchers in South-Western Finland over the past five decades (1953-2005). We found that appearance of fatal take-over trials, the cases where a pied flycatcher tried to take over a great tit nest but was killed by the tit, increased with a reduced interspecific laying date interval and with increasing densities of both tits and flycatchers. The probability of pied flycatchers taking over great tit nests increased with the density of pied flycatchers. Laying dates of the great tit and pied flycatcher are affected by the temperatures of different time periods, and divergent changes in these temperatures could consequently modify their competitive interactions. Densities are a result of reproductive success and survival, which can be affected by separate climatic factors in the resident great tit and trans-Saharan migrant pied flycatcher. On these bases we conclude that climate change has a great potential to alter the competitive balance between these two species.  相似文献   

4.
Migratory species are of special concern in the face of global climate change, since they may be affected by changes in the wintering area, along the migration route and at the breeding grounds. Here we show that migration and breeding times of a trans‐Saharan migrant, the pied flycatcher Ficedula hypoleuca, closely follow local temperatures along the migration route and at the breeding grounds. Because of differences in long‐term temperature trends of short within‐spring periods, the migration period and the time interval between migration and breeding dates of this species have extended in SW Finland. Temperatures in northern parts of Central Europe have risen at the time when the first migrants arrive there, facilitating their migration northward. Temperatures later in the spring have not changed, and the last individuals arrive at the same time as before. The timing of breeding has not advanced because temperatures at the breeding site after arrival have not changed. These results show that the pied flycatchers can speed up their migration in response to rising temperatures along the migration route. Our results strongly indicate that the effects of climate change have to be studied at the appropriate time and geographical scales for each species and population concerned.  相似文献   

5.
Climate change is profoundly affecting the phenology of many species. In migratory birds, there is evidence for advances in their arrival time at the breeding ground and their timing of breeding, yet empirical studies examining the interdependence between arrival and breeding time are lacking. Hence, evidence is scarce regarding how breeding time may be adjusted via the arrival‐breeding interval to help local populations adapt to local conditions or climate change. We used long‐term data from an intensively monitored population of the northern wheatear (Oenanthe oenanthe) to examine the factors related to the length of 734 separate arrival‐to‐breeding events from 549 individual females. From 1993 to 2017, the mean arrival and egg‐laying dates advanced by approximately the same amount (~5–6 days), with considerable between‐individual variation in the arrival‐breeding interval. The arrival‐breeding interval was shorter for: (a) individuals that arrived later in the season compared to early‐arriving birds, (b) for experienced females compared to first‐year breeders, (c) as spring progressed, and (d) in later years compared to earlier ones. The influence of these factors was much larger for birds arriving earlier in the season compared to later arriving birds, with most effects on variation in the arrival‐breeding interval being absent in late‐arriving birds. Thus, in this population it appears that the timing of breeding is not constrained by arrival for early‐ to midarriving birds, but instead is dependent on local conditions after arrival. For late‐arriving birds, however, the timing of breeding appears to be influenced by arrival constraints. Hence, impacts of climate change on arrival dates and local conditions are expected to vary for different parts of the population, with potential negative impacts associated with these factors likely to differ for early‐ versus late‐arriving birds.  相似文献   

6.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

7.
In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate‐driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site‐specific phenology. Thus, adaptations for efficient long‐distance flights might be also related to conditions at destination areas. For an obligatory long‐distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green‐up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green‐up and thus short optimal arrival periods. We suggest that the speed of spring green‐up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.  相似文献   

8.
Shifts in reproductive phenology due to climate change have been well documented in many species but how, within the same species, other annual cycle stages (e.g. moult, migration) shift relative to the timing of breeding has rarely been studied. When stages shift at different rates, the interval between stages may change resulting in overlaps, and as each stage is energetically demanding, these overlaps may have negative fitness consequences. We used long‐term data of a population of European pied flycatchers (Ficedula hypoleuca) to investigate phenological shifts in three annual cycle stages: spring migration (arrival dates), breeding (egg‐laying and hatching dates) and the onset of postbreeding moult. We found different advancements in the timing of breeding compared with moult (moult advances faster) and no advancement in arrival dates. To understand these differential shifts, we explored which temperatures best explain the year‐to‐year variation in the timing of these stages, and show that they respond differently to temperature increases in the Netherlands, causing the intervals between arrival and breeding and between breeding and moult to decrease. Next, we tested the fitness consequences of these shortened intervals. We found no effect on clutch size, but the probability of a fledged chick to recruit increased with a shorter arrival‐breeding interval (earlier breeding). Finally, mark–recapture analyses did not detect an effect of shortened intervals on adult survival. Our results suggest that the advancement of breeding allows more time for fledgling development, increasing their probability to recruit. This may incur costs to other parts of the annual cycle, but, despite the shorter intervals, there was no effect on adult survival. Our results show that to fully understand the consequences of climate change, it is necessary to look carefully at different annual cycle stages, especially for organisms with complex cycles, such as migratory birds.  相似文献   

9.
Certain populations of long‐distance migratory birds are suffering declines, which may be attributed to effects of climate change. In this article, we have analysed a long‐term (1991–2015) data set on a pied flycatcher Ficedula hypoleuca population breeding in nest‐boxes in a Mediterranean montane oak forest, exploring the trends in population size due to changes in nestling recruitment, female survival and female immigration. We have related these changes in population parameters to local climate, winter NAO index and to breeding density. During the last 25 yr the population has declined by half, mainly in association with a decrease in nestling mass and structural size which had repercussions on the probability of nestling recruitment to the population. Lower local nestling recruitment in certain years was linked to lower female immigration rate in the same years. On the other hand, the local survival of females remained stable throughout the study period. Laying date and breeding success were negatively affected by local temperatures while breeding, recruitment rate likewise by minimum temperature prior to breeding in April. As minimum April temperatures have increased across the study period, this may have affected recruitment and immigration rates negatively. On the other hand, tarsus length and body mass of nestlings were positively associated with winter NAO index, pointing to more global climatic links. Moreover, there was also a negative temporal trend in body mass of adults, implying increasingly difficult conditions for breeding. Declining recruit production in the study area could be attributed to a mismatch between the timing of arrival and breeding in the population, and the peak of food availability in this area.  相似文献   

10.
Dependence on climate‐driven environmental cues in the initiation of life cycle stages is a critical attribute when assessing vulnerability of species to climate change impacts. This study focused on spring ice phenology as a cue to the settling of migratory waterbirds, asking whether there is an asynchrony between ice phenology and settling phenology that could affect breeding success of six species with divergent population trends. In the 37 study lakes in southeastern Finland, the ice‐out date not only varied considerably between years, but became progressively earlier during the study period, 1991–2018. Settling phenology of all species tracked inter‐annual variation in ice phenology. However, the degree of asynchrony between ice phenology and settling phenology varied between species, allowing discrimination between early and late settlers. Considerable inter‐annual variation also occurred within species, but in only one species did the degree of asynchrony correlate with the ice‐out date: for the horned grebe Podiceps auritus an earlier ice‐out date meant greater asynchrony between settling phenology and ice phenology. The degree of asynchrony between settling phenology and ice phenology did not affect breeding success in any species. However, ice phenology per se affected breeding success of horned grebes: earlier ice‐out was associated with lower annual breeding success. Breeding numbers of horned grebe showed a long‐term decline. Results suggest that short‐distance migratory birds are able to respond to climate change‐driven phenological changes in their breeding environments, and that this ability may not depend on the relative timing of breeding.  相似文献   

11.
Nesting features of four species of cavity-nesting birds—common starling (Sturnus vulgaris L.), great tit (Parus major L.), common redstart (Phoenicurus phoenicurus L.), and pied flycatcher (Ficedula hypoleuca Pall.)—have been studied in city. Under urban conditions, number of eggs in a nest of a redstart is significantly larger, while for great tit and pied flycatcher it is significantly smaller; differences between the populations of starling are insignificant. Success of reproduction for the cavity-nesters is significantly higher in a city and exceeds the reference value for all the species by 10–20%. The number of chicks per a reproduction attempt is also higher in city for all the species. Starling population in city exceeds the reference population in the success of reproduction mainly due to a decrease in the percentage of abandoned eggs. The main reasons for an increase in the reproduction success of other species at the urbanized locality are weakened pressure of predators and a decrease in the percentage of abandoned broods.  相似文献   

12.
Many organisms adjust their reproductive phenology in response to climate change, but phenological sensitivity to temperature may vary between species. For example, resident and migratory birds have vastly different annual cycles, which can cause differential temperature sensitivity at the breeding grounds, and may affect competitive dynamics. Currently, however, adjustment to climate change in resident and migratory birds have been studied separately or at relatively small geographical scales with varying time series durations and methodologies. Here, we studied differential effects of temperature on resident and migratory birds using the mean egg laying initiation dates from 10 European nest box schemes between 1991 and 2015 that had data on at least one resident tit species and at least one migratory flycatcher species. We found that both tits and flycatchers advanced laying in response to spring warming, but resident tit populations advanced more strongly in relation to temperature increases than migratory flycatchers. These different temperature responses have already led to a divergence in laying dates between tits and flycatchers of on average 0.94 days per decade over the current study period. Interestingly, this divergence was stronger at lower latitudes where the interval between tit and flycatcher phenology is smaller and winter conditions can be considered more favorable for resident birds. This could indicate that phenological adjustment to climate change by flycatchers is increasingly hampered by competition with resident species. Indeed, we found that tit laying date had an additional effect on flycatcher laying date after controlling for temperature, and this effect was strongest in areas with the shortest interval between both species groups. Combined, our results suggest that the differential effect of climate change on species groups with overlapping breeding ecology affects the phenological interval between them, potentially affecting interspecific interactions.  相似文献   

13.
Climate change can influence many aspects of avian phenology and especially migratory shifts and changes in breeding onset receive much research interest in this context. However, changes in these different life‐cycle events in birds are often investigated separately and by means of ringing records of mixed populations. In this long‐term study on the willow warbler Phylloscopus trochilus, we investigated timing of spring and autumn migration in conjunction with timing of breeding. We made distinction among individuals with regard to age, sex, juvenile origin and migratory phase. The data set comprised 22‐yr of ringing records and two temporally separated data sets of egg‐laying dates and arrival of the breeding population close to the ringing site. The results reveal an overall advancement consistent in most, but not all, phenological events. During spring migration, early and median passage of males and females became earlier by between 4.4 to 6.3 d and median egg‐laying dates became earlier by 5 d. Male arrival advanced more, which may lead to an increase in the degree of protandry in the future. Among breeding individuals, only female arrival advanced in timing. In autumn, adults and locally hatched juvenile females did not advanced median passage, but locally hatched juvenile males appeared 4.2 d earlier. Migrating juvenile males and females advanced passage both in early and median migratory phase by between 8.4 to 10.1 d. The dissimilarities in the response between birds of different age, sex and migratory phase emphasize that environmental change may elicit intra‐specific selection pressures. The overall consistency of the phenological change in spring, autumn and egg‐laying, coupled with the unchanged number of days between median spring and autumn migration in adults, indicate that the breeding area residence has advanced seasonally but remained temporally constant.  相似文献   

14.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

15.
We studied the distribution and the reproductive success of the pied flycatcher Ficedula hypoleuca and the redstart Phoenieurus phoenicurus in relation to forest patch size, edge type (clearcut vs natural), distance from the forest edge, and vegetation characteristics in a forest-dominated landscape. Breeding performances were recorded in up to 72 forest patches during 1992–1994 for birds breeding in nest-boxes. In the spring, breeding individuals of both species arrived earlier in large forest patches (> 1 ha) than in smaller ones. Pied flycatchers arrived earlier on clearcut edges than natural edges but in the redstart there was no preference for a particular edge type. The territory distance from the forest to open land edge did not affect the arrival dates of either species. In the case of the pied flycatcher, the proportion of unpaired males was highest in patches < 1 ha in size and in the case of the redstart this applied to patches < 5 ha in size. Pairing success was not related to the forest edge type or the nest's distance from the edge. Nest predation was not patch-size nor edge-related for either of the species, but in the combined data for both species nest predation was higher at clearcut edges than at natural edges. Clutch size, brood size and the survival of nestlings to the fiedgling stage (fledgling/egg. %) were independent of the patch size, edge type and nest's "distance from the forest edge.  相似文献   

16.
Long distance migrants are declining more rapidly than residents, with birds that breed in Europe and winter in tropical Africa providing particularly clear examples. Causal mechanisms may include climate change, but are poorly understood partly because carry-over effects from non-breeding ranges can influence breeding performance. Using long-term data spanning four decades we assess how climatic variation in migrants’ winter, passage and breeding ranges determine timing of breeding and reproductive success. We do so for three Afro-European avian migrants of regional conservation concern (redstart, spotted flycatcher and wood warbler). We find that carry-over effects from passage regions consistently had stronger impacts on breeding phenology than breeding climate. Warm Mediterranean passage conditions promoted earlier breeding in all species, and redstarts also bred earlier following higher Sahel rainfall. Warmer springs on the breeding grounds promoted slightly earlier breeding in redstart and wood warbler, but not spotted flycatcher. Carry-over effects also typically influenced breeding performance to a greater extent than weather on the breeding grounds. Greater rainfall in the Sahel increased redstart brood size, warmer Mediterranean passage conditions increased spotted flycatcher brood size and, to a lesser extent, the number of wood warbler fledglings. In contrast to the concern regarding climate change impacts on migrants’ breeding grounds we found no evidence that warmer temperatures on the breeding grounds were associated with reduced reproductive performance. We thus find that climatic variation on the non-breeding grounds, especially passage regions, typically influenced migrants’ breeding phenology and demography more strongly than equivalent variation on the breeding sites. Such carry-over effects should be considered when assessing the causes of migrants’ marked population declines.  相似文献   

17.
This study documents the advancement of laying dates in three species of tits (Paridae) in southernmost Sweden during recent decades, and the absence of a similar response in the pied flycatcher Ficedula hypoleuca. It is based on several different nestbox studies; the oldest one starting in 1969. During 1969 to 2012, mean spring temperatures in the study area increased by between 0.06 and 0.08°C per year, depending on the period considered. Great tits Parus major, blue tits Cyanistes caeruleus and marsh tits Poecile palustris, which generally start egg laying between the last week of April and the first week of May, all advanced laying date at a similar rate during the study period (0.25 d yr–1). This indicates that these species were similarly affected by increasing temperatures. When accounting for mean spring temperature variation, we still found an advancement of laying date over the study period, mostly due to such relationships among marsh and blue tits. This result could reflect ongoing microevolution favouring earlier laying, but could also be a result of other factors such as increased intra‐ or inter‐specific competition for early breeding. Pied flycatchers, which generally lay during the third week of May, did not significantly advance the date of egg laying despite that the long‐term trend in the increase in ambient temperature during the 30‐d period preceding the start of egg laying was similar for pied flycatchers compared to the tit species.  相似文献   

18.
When assessing the benefits of early arrival date of migratory birds, a hidden and often ignored component of males’ fitness is the higher chance of early‐arriving birds to obtain extra‐pair fertilizations. Here we investigated how extra‐pair paternity might affect the relationship between male arrival date and number of fertilizations in a model study system, the European pied flycatcher Ficedula hypoleuca. For this purpose, we sampled and genotyped breeding pairs, unpaired males and offspring (including embryos from unhatched eggs when possible) of a Dutch pied flycatcher population. Detailed information on arrival date of males, egg laying date of their social mates and nest success was also recorded. Early‐arriving males had early‐laying females and males with early‐laying females had a higher probability of siring extra‐pair eggs and obtain more fertilizations. However, male arrival date alone did not correlate with the probability to gain extra‐pair paternity and neither to the amount of fertilized eggs. Both early‐ and late‐arriving males had a higher probability of losing paternity in their own nest compared to birds with an intermediate arrival date. Finally, late‐arriving males were more likely to remain unpaired but, interestingly, a few of these birds obtained paternity via extra‐pair copulations. Because earlier arrival date did not lead to more extra‐pair fertilizations and because such relationship seems to be driven mainly by the female's laying date, we conclude that the contribution of extra‐pair paternity to the overall fitness benefits of early male arrival date is relatively small.  相似文献   

19.
In migratory birds, mistimed arrival might have negative consequences for individual fitness, causing population declines. This may happen if arrival time is not synchronized with breeding time, especially when earlier springs favour earlier reproduction. We studied spring arrival time to the breeding areas in a pied flycatcher Ficedula hypoleuca population in southern Norway during a 30-year period (1985–2014). We investigated trends in arrival both for the entire population and for different population fractions (e.g. early vs. late arrivals). We also studied sex and age class differences, along with repeatability of arrival. Finally, we explored how arrival is influenced by environmental conditions at the areas birds use throughout the year, using mixed-effects models and quantile regressions with individual-based data. Spring arrival advanced over five days, at a similar rate through the entire population. Males and adult birds arrived earlier than females and yearlings. Arrival was significantly repeatable for males and females. Birds arrived earlier in years with high temperature and rainfall at the breeding grounds, and low NDVI both on the Iberian Peninsula and in central Europe. Later fractions of the population showed a steeper response to these environmental variables. This intra-population heterogeneity in the responses to the environment probably stems from a combination between the different selection pressures individuals are subject to and their age-related experience. Our results highlight the importance of studying how migration phenology is affected by the environment not only on the breeding grounds but also on the other areas birds use throughout the year.  相似文献   

20.
Host range is a key element of a parasite's ecology and evolution and can vary greatly depending on spatial scale. Generalist parasites frequently show local population structure in relation to alternative sympatric hosts (i.e. host races) and may thus be specialists at local scales. Here, we investigated local population specialization of a common avian nest‐based parasite, the hen flea Ceratophyllus gallinae (Schrank), exploiting two abundant host species that share the same breeding sites, the great tit Parus major (Linnaeus) and the collared flycatcher Ficedula albicollis (Temminck). We performed a cross‐infestation experiment of fleas between the two host species in two distinct study areas during a single breeding season and recorded the reproductive success of both hosts and parasites. In the following year, hosts were monitored again to assess the long‐term impact of cross‐infestation. Our results partly support the local specialization hypothesis: in great tit nests, tit fleas caused higher damage to their hosts than flycatcher fleas, and in collared flycatcher nests, flycatcher fleas had a faster larval development rates than tit fleas. However, these results were significant in only one of the two studied areas, suggesting that the location and history of the host population can modulate the specialization process. Caution is therefore called for when interpreting single location studies. More generally, our results emphasize the need to explicitly account for host diversity in order to understand the population ecology and evolutionary trajectory of generalist parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号