共查询到20条相似文献,搜索用时 15 毫秒
1.
GONZALO GIRIBET PRASHANT P. SHARMA LIGIA R. BENAVIDES SARAH L. BOYER RONALD M. CLOUSE BENJAMIN L. DE BIVORT DIMITAR DIMITROV GISELE Y. KAWAUCHI JEROME MURIENNE PETER J. SCHWENDINGER 《Biological journal of the Linnean Society. Linnean Society of London》2012,105(1):92-130
We investigate the phylogeny, biogeography, time of origin and diversification, ancestral area reconstruction and large‐scale distributional patterns of an ancient group of arachnids, the harvestman suborder Cyphophthalmi. Analysis of molecular and morphological data allow us to propose a new classification system for the group; Pettalidae constitutes the infraorder Scopulophthalmi new clade , sister group to all other families, which are divided into the infraorders Sternophthalmi new clade and Boreophthalmi new clade . Sternophthalmi includes the families Troglosironidae, Ogoveidae, and Neogoveidae; Boreophthalmi includes Stylocellidae and Sironidae, the latter family of questionable monophyly. The internal resolution of each family is discussed and traced back to its geological time origin, as well as to its original landmass, using methods for estimating divergence times and ancestral area reconstruction. The origin of Cyphophthalmi can be traced back to the Carboniferous, whereas the diversification time of most families ranges between the Carboniferous and the Jurassic, with the exception of Troglosironidae, whose current diversity originates in the Cretaceous/Tertiary. Ancestral area reconstruction is ambiguous in most cases. Sternophthalmi is traced back to an ancestral land mass that contained New Caledonia and West Africa in the Permian, whereas the ancestral landmass for Neogoveidae included the south‐eastern USA and West Africa, dating back to the Triassic. For Pettalidae, most results include South Africa, or a combination of South Africa with the Australian plate of New Zealand or Sri Lanka, as the most likely ancestral landmass, back in the Jurassic. Stylocellidae is reconstructed to the Thai‐Malay Penisula during the Jurassic. Combination of the molecular and morphological data results in a hypothesis for all the cyphophthalmid genera, although the limited data available for some taxa represented only in the morphological partition negatively affects the phylogenetic reconstruction by decreasing nodal support in most clades. However, it resolves the position of many monotypic genera not available for molecular analysis, such as Iberosiro, Odontosiro, Speleosiro, Managotria or Marwe, although it does not place Shearogovea or Ankaratra within any existing family. The biogeographical data show a strong correlation between relatedness and formerly adjacent landmasses, and oceanic dispersal does not need to be postulated to explain disjunct distributions, especially when considering the time of divergence. The data also allow testing of the hypotheses of the supposed total submersion of New Zealand and New Caledonia, clearly falsifying submersion of the former, although the data cannot reject the latter. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 92–130. 相似文献
2.
Michael S. Y. Lee Mark N. Hutchinson Trevor H. Worthy Michael Archer Alan J. D. Tennyson Jennifer P. Worthy R. Paul Scofield 《Biology letters》2009,5(6):833-837
The New Zealand (NZ) lizard fossil record is currently limited to late Quaternary remains of modern taxa. The St Bathans Fauna (early Miocene, southern South Island) extends this record to 19–16 million years ago (Myr ago). Skull and postcranial elements are similar to extant Oligosoma (Lygosominae) skinks and Hoplodactylus (Diplodactylinae) geckos. There is no evidence of other squamate groups. These fossils, along with coeval sphenodontines, demonstrate a long conservative history for the NZ lepidosaurian fauna, provide new molecular clock calibrations and contradict inferences of a very recent (less than 8 Myr ago) arrival of skinks in NZ. 相似文献
3.
The biogeographic and tectonic history of India 总被引:10,自引:0,他引:10
John C. Briggs 《Journal of Biogeography》2003,30(3):381-388
Aim To present an up to date account of the Mesozoic history of India and its relationship to the other Gondwana continents and to Eurasia. Location Continents surrounding the Western Indian Ocean. Methods Utilization of recent evidence of continental relationships based upon research in stratigraphy, palaeomagnetism, palaeontology, and contemporary biotas. Results The physical data revealed a sequence of events as India moved northward: (1) India–Madagascar rifted from east Africa 158–160 Ma (million years ago), (2) India–Madagascar from Antarctica c. 130 Ma, (3) India–Seychelles from Madagascar 84–96 Ma, (4) India from Seychelles 65 Ma, (5) India began collision with Eurasia 55–65 Ma and (6) final suturing took place c. 42–55 Ma. However, data from fossil and contemporary faunas indicate that, throughout the late Cretaceous, India maintained exchanges with adjacent lands. There is an absence in the fossil record of peculiar animals and plants that should have evolved, had India undergone an extended period of isolation just before its contact with Eurasia. Main conclusions The depiction of India in late Cretaceous as an isolated continent is in error. Most global palaeomaps, including the most recent one, show India, as it moves northward, following a track far out in the Indian Ocean. But the evidence now indicates that India's journey into northern latitudes cannot have taken place under such isolated circumstances. Although real breaks among the lands were indicated by the physical data, faunal links were maintained by vagile animals that were able to surmount minor marine barriers. India, during its northward journey, remained close to Africa and Madagascar even as it began to contact Eurasia. 相似文献
4.
KENNETH D. ANGIELCZYK ANDREY A. KURKIN 《Zoological Journal of the Linnean Society》2003,139(2):157-212
Dicynodont therapsids have been known from the Upper Permian of Eastern Europe since the beginning of the twentieth century, but the phylogenetic relationships of these taxa have not been examined cladistically. Here we present the results of a phylogenetic analysis that includes eight Permian dicynodonts from Russia as well as 18 taxa best known from southern Africa. Our results do not conflict with much of the established picture of Permian dicynodont phylogeny, but are consistent with several novel hypotheses. Most importantly, our analysis suggests that the genus Dicynodon is paraphyletic, and we question its use in correlating widely separated basins. However, we cannot strongly reject a monophyletic Dicynodon . Our results also indicate that the closest Permian relatives of Kannemeyeria lived in Russia, suggesting a Laurasian origin for the lineage that includes this important Triassic taxon. The phylogeny presented here also suggests a Laurasian origin for several other dicynodont clades, but a Gondwanan origin is equally likely given the data at hand. Regardless of where these groups originated, there appears to be some endemism among Late Permian dicynodont faunas. Although our understanding of dicynodont phylogeny is improving, this study emphasizes the disparity in sampling of the dicynodont record between Gondwana and Laurasia and the need for a large scale phylogenetic analysis of Permian and Triassic dicynodonts. © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 139 , 157−212. 相似文献
5.
6.
Per G. P. Ericson 《Journal of Biogeography》2012,39(5):813-824
Aim To reconstruct the biogeographical history of a large clade of mainly terrestrially adapted birds (coraciiform and piciform birds, owls, diurnal raptors, New World vultures, trogons, mousebirds, cuckoo‐rollers, seriemas, parrots and passerines) to test the hypothesis of its Gondwanan origin. Location Global. Methods The phylogenetic tree used in the analysis was a family‐level tree estimated from previously published nuclear DNA sequence data. Each family for which a thorough and taxonomically well‐sampled phylogenetic analysis exists was subject to an initial dispersal–vicariance analysis in order to reconstruct ancestral areas for its two most basal lineages. Both basal lineages were then used to represent the family in the subsequent reconstruction of ancestral distributions for the entire radiation. Results The analysis showed that three reciprocally monophyletic groups of terrestrial birds have diversified in the Gondwanan land areas of Australia, South America and Africa, respectively. Although each of these three groups may also have originally included other groups, the only survivors today from the Australian radiation are the passerines and parrots, while the falcons and seriemas have survived from the South American radiation. The group of survivors from the African radiation is considerably more taxonomically diverse and includes all coraciiform and piciform birds, owls, diurnal raptors (except falcons), New World vultures, trogons, mousebirds and cuckoo‐rollers. Main conclusions The outlined evolutionary scenario with three geographically isolated clades of terrestrial birds is consistent with the available estimates of Late Cretaceous to early Palaeogene dates for these radiations. The diversifications and ecological adaptations within each of the three groups most likely took place in isolation on the different continents. Many cases of convergently evolved adaptations may be revealed through the increased understanding of the phylogenetic relationships of terrestrial birds. 相似文献
7.
Manuel Schweizer Marcel Güntert Stefan T. Hertwig 《Journal of Zoological Systematics and Evolutionary Research》2012,50(2):145-156
The parrot genus Prioniturus occurs in the oceanic Philippines, Palawan and Wallacea, a geologically dynamic region with a complex history of land and sea. The described taxa of Prioniturus have been variously placed in different assemblages, and different numbers of species have been recognized. However, a phylogenetic framework is so far lacking. This would be the prerequisite to reconstructing dispersal and colonization patterns of Prioniturus across and within Wallacea and the Philippines. Following our robustly supported phylogenetic hypothesis based on two mitochondrial genes, we propose to treat Prioniturus mindorensis comb. nov. as well as Prioniturus montanus and Prioniturus waterstradti as separate species. In Prioniturus discurus discurus and Prioniturus discurus whiteheadi, further studies using additional data and specimens are necessary to clarify their taxonomic status. This result is congruent with other studies demonstrating that alpha diversity of the Philippine avifauna is strongly underestimated. According to our biogeographic reconstruction, Prioniturus has diversified by a complex combination of colonization of islands and subsequent divergence in allopatry among and within island groups. Dispersal between Sulawesi/Wallacea and the Philippines occurred twice and documents a rare case of faunal exchange between these two regions. 相似文献
8.
MICHAEL F. BRABY NAOMI E. PIERCE ROGER VILA 《Biological journal of the Linnean Society. Linnean Society of London》2007,90(3):413-440
The Australian fauna is composed of several major biogeographical elements reflecting different spatial and temporal histories. Two groups of particular interest are the Gondwanan Element, reflecting an ancient origin in Gondwana or southern Gondwana (southern vicariance hypothesis), and the Asian Element, reflecting a more recent origin in Asia, Eurasia or Laurasia (northern dispersal hypothesis). Theories regarding the origin and evolution of butterflies (Hesperioidea, Papilionoidea) in Australia are controversial, with no clear consensus. Here, we investigate the phylogenetic and historical biogeographical relationships of the subtribe Aporiina, a widespread taxon with disjunct distributions in each of the major zoogeographical regions. Attention is paid to origins of the subtribe in the Australian Region for which several conflicting hypotheses have been proposed for the Old World genus Delias Hübner. Our phylogenetic reconstruction was based on analysis of fragments of two nuclear genes (elongation factor‐1α, wingless) and one mitochondrial gene (cytochrome oxidase subunit I) for 30 taxa. Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined data set (2729 bp; 917 parsimony informative characters) recovered six major lineages within the monophyletic Aporiina, with the following topology: (Cepora + Prioneris + (Mylothris + (Aporia + Delias group + Catasticta group))). Given a probable age of origin of the stem‐group near the Cretaceous/Tertiary boundary (69–54 Mya), followed by diversification of the crown‐group in the early to mid Tertiary (57–45 Mya), we show that an origin of the Aporiina in either southern Gondwana or Laurasia is equally parsimonious, and that dispersal has played a major role in shaping the underlying phylogenetic pattern. We tentatively conclude that an origin in southern Gondwanan is more likely; however, neither hypothesis satisfactorily explains the present‐day distribution, and additional lower‐level phylogenies are needed to determine the directionality of dispersal events of several taxa and to reject one hypothesis over the other. Dispersal is inferred to have occurred primarily during cooler periods when land bridges or stepping‐stones were available between many of the zoogeographical regions. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 413–440. 相似文献
9.
10.
Sanna Huttunen Michael S. Ignatov Dietmar Quandt Lars Hedenäs 《Botanical journal of the Linnean Society. Linnean Society of London》2013,171(2):330-353
The phylogenetic position and generic composition of the moss family Plagiotheciaceae were explored using DNA sequence data from three genomes: plastid trnL‐F and rps4, mitochondrial nad5 intron and nuclear ITS1‐5.8S‐ITS2. Our phylogenetic analyses included 35 terminals from Plagiotheciaceae and 71 outgroup taxa from a representative set of hypnalean moss families. The family Plagiotheciaceae is resolved in the early‐diverging Hypnales grade, together with Fontinalaceae, Habrodontaceae and several genera which are mainly distributed in the area of the former Gondwanan supercontinent. However, monophyly of the family can only be attained if the three Southern Hemisphere genera, Acrocladium, Catagonium and Rhizofabronia, are excluded. Ancestral state reconstruction for eight morphological characters reveals that many characters used to delimit the family, such as a lack of pseudoparaphyllia and rhizoids inserted in the leaf axils, were already present in the ancestor of Hypnales. Dispersal–vicariance analysis suggests that Plagiotheciaceae and Fontinalaceae have their ancestral distributions in the area of the former Laurasian supercontinent. As the analyses also reveal a Gondwanan distribution for the ancestor of Hypnales in general, Plagiotheciaceae and Fontinalaceae represent the first diverging Laurasian lineages in the order. © 2013 The Linnean Society of London 相似文献
11.
Aim The aim of this paper is to determine the optimal methods for delimiting areas of endemism for Elegia L. (Restionaceae), an endemic genus of the Cape Floristic Region. We assess two methods of scoring the data (presence–absence in regular grids, or in irregular eco‐geographical regions) and three methods for locating biogeographical centres or areas of endemism, and evaluate one method for locating biotic elements. Location The Cape Floristic Region (CFR), South Africa. Methods The distribution of all 48 species of Elegia was mapped as presence–absence data on a quarter‐degree grid and on broad habitat units (eco‐geographical areas). Three methods to delimit areas of endemism were applied: parsimony analysis of endemism (PAE), phenetic cluster analysis, and NDM (‘end em ism’). In addition, we used presence–absence clustering (‘Prabclus’) to delimit biotic elements. The performances of these methods in elucidating the geographical patterns in Elegia were compared, for both types of input data, by evaluating their efficacy in maximizing the proportion of endemics and the number of areas of endemism. Results Eco‐geographical areas perform better than quarter‐degree grids. The eco‐geographical areas are potentially more likely to track the distribution of species. The phenetic approach performed best in terms of its ability to delimit areas of endemism in the study area. The species richness and the richness of range‐restricted species are each highest in the south‐western part of the CFR, decreasing to the north and east. The phytogeographical centres identified in the present study are the northern mountains, the southern mountains (inclusive of the Riviersonderend Mountains and the Cape Peninsula), the Langeberg range, the south coast, the Cape flats, and the west coast. Main conclusions This study demonstrates that (1) eco‐geographical areas should be preferred over a grid overlay in the study of biogeographical patterns, (2) phenetic clustering is the most suitable analytical method for finding areas of endemism, and (3) delimiting biotic elements does not contribute to an understanding of the biogeographical pattern in Elegia. The areas of endemism in Elegia are largely similar to those described in other studies, but there are many detailed differences. 相似文献
12.
Plio-Pleistocene climatic oscilations, Holarctic biogeography and speciation in an avian subfamily 总被引:3,自引:0,他引:3
Sergei V. Drovetski 《Journal of Biogeography》2003,30(8):1173-1181
Aim In this paper, I discuss the temporal and spatial aspects of historical biogeography and speciation in a widely distributed Holarctic subfamily of birds (Tetraoninae). Location Northern Holarctic. Results Using dated fossils, I calibrated the molecular clock for the mitochondrial control region at 7.23 ± 1.58% nucleotide divergence (maximum likelihood corrected) per million years. The data suggest that grouse (Tetraoninae) originated in the Middle Pliocene, 6.3 Ma. Grouse apparently originated in the northern part of western Nearctic, and Palearctic was colonized independently three times, first by the ancestor of all grouse in the Middle Pliocene, then by the ancestor of forest (Falcipennis, Tetrao and Lyrurus) and prairie (Centrocercus, Dendragapus and Tympanuchus) grouse in the Late Pliocene, and finally by the ancestral Lagopus in the Early Pleistocene. Only once Nearctic was colonized from Palearctic by a common ancestor of forest grouse. Sympatry and range symmetry were positively correlated with molecular divergence. These correlations suggest that peripatric isolation was the predominant mode of speciation throughout grouse history. Main conclusions Speciation events in grouse were driven by climatic oscillations of the Pliocene and Pleistocene. Isolation of small peripheral populations from widely distributed ancestors was the dominant mode of speciation in grouse. Isolations during interglacials both across Beringia, and in southern mountain areas when boreal habitats were restricted to high elevations, suggest an important role for vicariance in grouse speciation. 相似文献
13.
Alexandrium catenella (Whedon et Kof.) Balech, A. tamarense (M. Lebour) Balech, and A. fundyense Balech comprise the A. tamarense complex, dinoflagellates responsible for paralytic shellfish poisoning worldwide. The relationships among these morphologically defined species are poorly understood, as are the reasons for increases in range and bloom occurrence observed over several decades. This study combines existing data with new ribosomal DNA sequences from strains originating from the six temperate continents to reconstruct the biogeography of the complex and explore the origins of new populations. The morphospecies are examined under the criteria of phylogenetic, biological, and morphological species concepts and do not to satisfy the requirements of any definition. It is recommended that use of the morphospecies appellations within this complex be discontinued as they imply erroneous relationships among morphological variants. Instead, five groups (probably cryptic species) are identified within the complex that are supported on the basis of large genetic distances, 100% bootstrap values, toxicity, and mating compatibility. Every isolate of three of the groups that has been tested is nontoxic, whereas every isolate of the remaining two groups is toxic. These phylogenetic groups were previously identified within the A. tamarense complex and given geographic designations that reflected the origins of known isolates. For at least two groups, the geographically based names are not indicative of the range occupied by members of each group. Therefore, we recommend a simple group‐numbering scheme for use until the taxonomy of this group is reevaluated and new species are proposed. 相似文献
14.
15.
Previous studies based on different molecular datasets have generated conflicting topologies for Ranunculeae. Here, we revisit the phylogeny of Ranunculeae by analyzing the individual matK/trnK, psbJ-petA, and internal transcribed spacer (ITS) data, the combined matK/trnK, psbJ-petA, and ITS dataset, and the combinedrbcL, trnL-F, matK/trnK, psbJ-petA, and ITS dataset. Based on the tree-based comparisons, blast searches against NCBI of the sequences, and close examination of the alignment, we found that 10 psbJ-petA sequences previously used were questionable (erroneous or problematic) and responsible for previous conflicting topologies. After omitting these questionable sequences, we provide a new phylogeny for Ranunculeae, in which Beckwithia–Cyrtorhyncha, Kumlienia, andPeltocalathos were replaced. These new replacements are supported by corresponding morphological characters. Moreover, three previously proposed intercontinental disjunct distributions within Ranunculus were also refuted. In our framework, our divergence time and biogeographic analyses indicate that divergence time estimates and the ancestral areas reconstructed for 10 of the 15 nodes in the genus-level phylogeny were influenced by elimination of the questionable sequences. The most recent common ancestor of Ranunculeae was inferred to be present in Europe and North America during the late Eocene. Clades I and II began to diversify in Europe and North America, respectively, and subsequently migrated to other continents. This study shows that it is necessary to analyze individual chloroplast DNA region datasets separately to detect questionable sequences early in the study. The combined dataset including the questionable sequences resulted in an erroneous phylogenetic tree, and the use of this tree subsequently affected age estimates and biogeographic analyses. 相似文献
16.
Lu Jiang Qin Bao Wei He Deng‐Mei Fan Shan‐Mei Cheng Jordi López‐Pujol Myong Gi Chung Shota Sakaguchi Arturo Sánchez‐González Aysun Gedik De‐Zhu Li Yi‐Xuan Kou Zhi‐Yong Zhang 《植物分类学报:英文版》2022,60(4):759-772
Fagus L. is a key component in temperate deciduous broadleaf forests of the Northern Hemisphere. However, its biogeographic history has not been examined under the framework of a fully resolved and reasonably time-calibrated phylogeny. In this study, we sequenced 28 nuclear single/low-copy loci (18 555 bp in total) of 11 Fagus species/segregates and seven outgroups. Phylogenetic trees were reconstructed using both concatenation-based (maximum parsimony, maximum likelihood, and Bayesian inference) and coalescent-based methods (StarBEAST2, ASTRAL). The monophyly of two subgenera (Fagus and Engleriana) and most sections was well supported, except for sect. Lucida, which was paraphyletic with respect to sect. Longipetiolata. We also found a major phylogenetic conflict among North American, East Asian, and West Eurasian lineages of subgen. Fagus. Three segregates that have isolated distribution (F. mexicana, F. multinervis, and F. orientalis) were independent evolutionary units. Biogeographic analysis with fossils suggested that Fagus could have originated in the North Pacific region in late early Eocene. Major diversifications coincided with a climate aberration at the Eocene/Oligocene boundary and the global cooling since mid-Miocene. The late Miocene accelerated global cooling and the Pleistocene glaciations would have driven beeches into East Asia, North America, and West Eurasia. Meanwhile, range reduction and extinction in high latitudes, central Asia, and western North America converged to form the beech modern distribution pattern. This study provides a first attempt to disentangle the biogeographic history of beeches in the context of a nearly resolved and time-calibrated phylogeny, which could shed new insights into the formation of the temperate biome in the Northern Hemisphere. 相似文献
17.
Philip D. Mannion Paul Upchurch Rosie N. Barnes Octávio Mateus 《Zoological Journal of the Linnean Society》2013,168(1):98-206
Titanosauriforms represent a diverse and globally distributed clade of neosauropod dinosaurs, but their inter‐relationships remain poorly understood. Here we redescribe Lusotitan atalaiensis from the Late Jurassic Lourinhã Formation of Portugal, a taxon previously referred to Brachiosaurus. The lectotype includes cervical, dorsal, and caudal vertebrae, and elements from the forelimb, hindlimb, and pelvic girdle. Lusotitan is a valid taxon and can be diagnosed by six autapomorphies, including the presence of elongate postzygapophyses that project well beyond the posterior margin of the neural arch in anterior‐to‐middle caudal vertebrae. A new phylogenetic analysis, focused on elucidating the evolutionary relationships of basal titanosauriforms, is presented, comprising 63 taxa scored for 279 characters. Many of these characters are heavily revised or novel to our study, and a number of ingroup taxa have never previously been incorporated into a phylogenetic analysis. We treated quantitative characters as discrete and continuous data in two parallel analyses, and explored the effect of implied weighting. Although we recovered monophyletic brachiosaurid and somphospondylan sister clades within Titanosauriformes, their compositions were affected by alternative treatments of quantitative data and, especially, by the weighting of such data. This suggests that the treatment of quantitative data is important and the wrong decisions might lead to incorrect tree topologies. In particular, the diversity of Titanosauria was greatly increased by the use of implied weights. Our results support the generic separation of the contemporaneous taxa Brachiosaurus, Giraffatitan, and Lusotitan, with the latter recovered as either a brachiosaurid or the sister taxon to Titanosauriformes. Although Janenschia was recovered as a basal macronarian, outside Titanosauria, the sympatric Australodocus provides body fossil evidence for the pre‐Cretaceous origin of titanosaurs. We recovered evidence for a sauropod with close affinities to the Chinese taxon Mamenchisaurus in the Late Jurassic Tendaguru beds of Africa, and present new information demonstrating the wider distribution of caudal pneumaticity within Titanosauria. The earliest known titanosauriform body fossils are from the late Oxfordian (Late Jurassic), although trackway evidence indicates a Middle Jurassic origin. Diversity increased throughout the Late Jurassic, and titanosauriforms did not undergo a severe extinction across the Jurassic/Cretaceous boundary, in contrast to diplodocids and non‐neosauropods. Titanosauriform diversity increased in the Barremian and Aptian–Albian as a result of radiations of derived somphospondylans and lithostrotians, respectively, but there was a severe drop (up to 40%) in species numbers at, or near, the Albian/Cenomanian boundary, representing a faunal turnover whereby basal titanosauriforms were replaced by derived titanosaurs, although this transition occurred in a spatiotemporally staggered fashion. © 2013 The Linnean Society of London 相似文献
18.
Clement WL Tebbitt MC Forrest LL Blair JE Brouillet L Eriksson T Swensen SM 《American journal of botany》2004,91(6):905-917
The Begoniaceae consist of two genera, Begonia, with approximately 1400 species that are widely distributed in the tropics, and Hillebrandia, with one species that is endemic to the Hawaiian Islands and the only member of the family native to those islands. To help explain the history of Hillebrandia on the Hawaiian Archipelago, phylogenetic relationships of the Begoniaceae and the Cucurbitales were inferred using sequence data from 18S, rbcL, and ITS, and the minimal age of both Begonia and the Begoniaceae were indirectly estimated. The analyses strongly support the placement of Hillebrandia as the sister group to the rest of the Begoniaceae and indicate that the Hillebrandia lineage is at least 51-65 million years old, an age that predates the current Hawaiian Islands by about 20 million years. Evidence that Hillebrandia sandwicensis has survived on the Hawaiian Archipelago by island hopping from older, now denuded islands to younger, more mountainous islands is presented. Various scenarios for the origin of ancestor to Hillebrandia are considered. The geographic origin of source populations unfortunately remains obscure; however, we suggest a boreotropic or a Malesian-Pacific origin is most likely. Hillebrandia represents the first example in the well-studied Hawaiian flora of a relict genus. 相似文献
19.
Caltha is a widely distributed genus in the buttercup family (Ranunculaceae) showing interesting distribution patterns in both hemispheres. Evolutionary history ofCaltha was examined by means of phylogenetic, molecular dating, and historical biogeographic analyses with a more comprehensive sampling than previous studies. The internal transcribed spacer from the nuclear genome and trnL-F and atpB-rbcL regions from the plastid genome were used and analyzed using parsimony and Bayesian methods. Divergence time was estimated using Bayesian dating analyses with multiple fossil calibrations. Historical biogeography was inferred using the Bayes-DIVA method implemented in RASP. We obtained a well-resolved and well-supported phylogeny within the Caltha lineage. Caltha natansPall. diverged first from the genus and the other species grouped into two clades. Our expanded sampling scheme revealed a complicated evolutionary pattern in theC. palustris complex. Caltha sinogracilis W. T. Wang was resolved to be a member of the C. palustris complex, rather than closely related to C. scaposa Hook. f. & Thomson. Caltha rubriflora B. L. Burtt & Lauener was also revealed to be not just a red-flower form of C. sinogracilis. The diversification of the genus began at 50.5 mya (95% high posterior density: 37.1–63.9 mya), and its ancestral range was very probably in the Northern Hemisphere. The South American species may derive from western North American ancestors that dispersed along the western American Cordillera during the Cenozoic era. The vicariance model of the Southern Hemisphere species proposed by a previous study was rejected in this study. 相似文献
20.
Tree pests cause billions of dollars of damage annually; yet, we know little about what limits their regional composition and distribution. Here, we model the co-occurrence of 4510 pests and 981 tree host genera spread across 233 countries. We show the composition of tree pests is primarily driven by the phylogenetic composition of host trees, whereas effects of climate and geography tend to be more minor. Pests that utilise many hosts tend to be more widespread; however, most pests do not fill the geographic range of their hosts—indicating that many pests could expand their extents if able to overcome barriers limiting their current distribution. Our results suggest that the establishment of pests in new regions may be largely dictated by the presence of suitable host trees, but more work is needed to fully understand the influences climate has on the distributions of individual pest species. 相似文献