共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Animal : an international journal of animal bioscience》2016,10(1):142-149
Production systems for fattening pigs have been characterized over the last 2 decades by rising farm sizes coupled with increasing group sizes. These developments resulted in a serious public discussion regarding animal welfare and health in these intensive production systems. Even though large farm and group sizes came under severe criticism, it is still unknown whether these factors indeed negatively affect animal welfare. Therefore, the aim of this study was to assess the effect of group size (<15 v. 15 to 30 v. >30 pigs/pen) on various animal-based measures of the Welfare Quality® protocol for growing pigs under conventional fattening conditions. A total of 60 conventional pig fattening farms with different group sizes in Germany were included. Moderate bursitis (35%) was found as the most prevalent indicator of welfare-related problems, while its prevalence increased with age during the fattening period. However, differences between group sizes were not detected (P>0.05). The prevalence of moderately soiled bodies increased from 9.7% at the start to 14.2% at the end of the fattening period, whereas large pens showed a higher prevalence (15.8%) than small pens (10.4%; P<0.05). With increasing group size, the incidence of moderate wounds with 8.5% and 11.3% in small- and medium-sized pens, respectively, was lower (P<0.05) than in large-sized ones (16.3%). Contrary to bursitis and dirtiness, its prevalence decreased during the fattening period. Moderate manure was less often found in pigs fed by a dry feeder than in those fed by a liquid feeding system (P<0.05). The human–animal relationship was improved in large in comparison to small groups. On the contrary, negative social behaviour was found more often in large groups. Exploration of enrichment material decreased with increasing live weight. Given that all animals were tail-docked, tail biting was observed at a very low rate of 1.9%. In conclusion, the results indicate that BW and feeding system are determining factors for the welfare status, while group size was not proved to affect the welfare level under the studied conditions of pig fattening. 相似文献
4.
Angert AL Crozier LG Rissler LJ Gilman SE Tewksbury JJ Chunco AJ 《Ecology letters》2011,14(7):677-689
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability. 相似文献
5.
Dogma for the past three decades has dictated that parathyroid hormone (PTH) has no direct effect on intestine with regard to calcium or phosphate absorption, but rather that PTH acts to promote the synthesis of a hormonally active form of vitamin D, namely 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. However, diverse laboratories have each provided some evidence to suggest PTH does indeed have a direct effect on intestine. We will briefly review the evidence for biological effects, biochemical effects, and the presence of intestinal receptors for PTH, and conclude with the implications for biomedical research. 相似文献
6.
Aim To investigate altitudinal range shifts of bryophytes in Switzerland by comparing recent altitudinal distributions with historical distributions derived from herbarium specimens. Location Switzerland, covering 41,285 km2 in Central Europe. Methods We used a dataset of 8520 herbarium specimens of 61 bryophyte species and compared altitudinal data between the two periods 1880–1920 and 1980–2005. The records we used were not specifically sampled for climatological analyses, but originate from non‐systematic fieldwork by various collectors. Historical and recent records were distributed all over Switzerland with occurrences in all major biogeographical areas. To account for different sampling efforts in the two time periods, different subsampling procedures were applied. Results Overall, we found a significant mean increase in altitude of 89 ± 29 m which was mainly driven by the cryophilous species (+222 ± 50 m). The mean increase in altitude of cryophilous species corresponds to a decadal upward shift of 24 m. The upper range limit of cryophilous species also increased by 189 ± 55 m, but there was no effect on the lower range limit. For intermediate and thermophilous species neither mean, nor upper or lower range limits changed. However, the proportion of records of thermophilous to cryophilous species increased considerably at lower altitudes, but levelled off above approximately 1800 m. Main conclusions We conclude that cryophilous bryophytes are expanding their range to higher elevations in Switzerland and that at lower elevations, a slow extinction process is going on, probably as a result of climate warming trends. The observed decadal upward shifts of cryophilous species closely match those reported from vascular plants in Europe and those expected, given recent estimates of climate warming trends. We emphasize that herbaria provide valuable data that can be used to detect ongoing changes in the distribution of species. 相似文献
7.
A significant decrease in the body size of Audouin's Gulls Larus audouinii breeding at the Chafarinas Islands is reported. The decrease in linear measurements in the current breeding population ranged from 2.5% to 5.6% in males and from 0.61% to 4.4% in females. This was detected when assessing the reliability of a sex-discriminating function derived for the same colony 13 years earlier. When applied to the current population, this function failed to predict the sex of a large proportion of males (44%). The relative decrease in mean size was significantly greater in males than in females for culmen, nalospi and tarsus lengths, while for bill depth at culmen, wing length and body mass the relative decrease was similar in both sexes. Since the extent of differences depended on sex, these differences cannot be attributed to a systematic between-observer bias. Mean body size reduction might be either the result of a greater proportion of small breeding birds in the current population, because of increased availability of nesting sites (competition relaxation hypothesis), or an outcome of environmental factors affecting growth parameters (environmental constraint hypothesis). According to the first hypothesis, the changes observed would be associated with higher variability values. Conversely, if the second is true, the degree of variability should be similar. Since there are no significant differences in the degree of variability shown in the two data sets, our results support the second hypothesis. The environmental constraint acting via growth parameters is probably related to the increase in the number of Audouin's Gull breeding pairs while food availability was depleted. Our data suggest that changes in the duration of the growth period, rather than in the growth rates themselves, are involved in the body size differences found. 相似文献
8.
9.
Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework. 相似文献
10.
1. A factorial experiment was conducted in artificial outdoor streams to quantify the effects of irradiance (two levels) and two mayfly grazers (four densities of each) on periphytic community structure. The mayflies were Ecdyonurus venosus (Heptageniidae), a grazer using brushing mouthparts, and Baetis spp. (Baetidae) a grazer which uses mandibles and maxilla to scrape and gather periphyton. The experiment ran for 16 days. 2. Grazer densities in channels approximated those existing in a shoreline habitat in the River Sihl, Switzerland. Light treatments were natural (daily mean = 810 μmol m–2 s–1) and shaded (daily mean = 286 μmol m–2 s–1). 3. Higher irradiance increased total algal abundance by a factor of 4. Algae most affected were prostrate/motile and erect diatoms, filamentous chlorophytes and Hydrurus foetidus. 4. Both species of mayfly reduced periphytic and algal biomass. Mayfly–mayfly interactions, however, were associated with statistical increases in algal biovolume and chlorophyll-a content, indicating that the two grazers may have interfered with one another as their densities increased. The mayfly–mayfly interaction did not influence periphytic ash-free dry mass (AFDM). Light modified the influence of Ecdyonurus such that this mayfly produced greater reductions in algal biovolume under high irradiance. 5. Despite efforts to exclude other grazers, chironomids colonized experimental channels. Chironomid biomass was approximately eight times less than mayflies across treatments and was positively correlated with all measures of periphytic abundance, suggesting that these grazers were responding to periphyton rather than controlling it. Chironomids were also associated with an increase in the abundance of diatoms having a prostrate/motile physiognomy. The only physiognomy to show a negative relationship with chironomid biomass was the thallus type, a form which comprised less than 1% of the algal biovolume across channels. 6. Ecdyonurus and Baetis had distinct influences on algal physiognomy. Ecdyonurus, for example, reduced adnate, stalked and Achnanthes-type physiognomies, but was associated with a significant increase in the abundance of filamentous chlorophytes (primarily Ulothrix sp.). Baetis reduced erect, Achnanthes-type and thallus physiognomies. Neither mayfly influenced the abundance of prostrate/motile diatoms; a physiognomy that comprised 21% of the algae in channels. 7. Light and mayfly interactions affected algal community structure. The interaction of Ecdyonurus with light had a negative effect on erect diatoms, filamentous chlorophytes and the thallus physiognomy, but a positive effect on stalked and Achnanthes-type physiognomies. Baetis interacting with light had a positive effect on adnate diatoms. 8. Although both mayfly taxa influenced periphytic community structure, physiognomy was not a good predictor of algal susceptibility to grazing. The type of substratum to which an alga is attached (detritus or algal filaments vs hard surfaces) and location within the periphytic matrix may be better indicators of vulnerability to grazing than physiognomy. 相似文献
11.
In summary, we think that the intradermal injection of the tumescent solution with epinephrine, which produced a peau d'orange appearance of the overlying skin, resulted in superficial flap loss secondary to the vasoconstrictive property of epinephrine combined with the hydrostatic pressure of the injection in this patient within a superficial plane and flap elevation. This delayed the clearance of epinephrine from the flaps. In this case, removal of the sutures did not result in any improvement in the flap, and this maneuver was performed too late. If a peau d'orange appearance is observed after injection, we recommend waiting until the fluid has time to recirculate (15 to 30 minutes, at a minimum) and avoid immediate incising or undermining of the flap. 相似文献
12.
Various models that assume correlations between maternal phenotype and offspring environment predict adaptive variation in egg size within populations. Here we conduct a comparative test of these models using published data on fish egg size. Intrapopulation variation in egg size was most pronounced in fish with demersal eggs and larvae (median coefficient of variation [CV] at family level = 6.5%), where offspring environment is likely influenced by maternal phenotype, and least so in fish with pelagic eggs (CV = 3.6%), which experience a relatively stochastic spatial distribution during incubation. This difference was significant at various taxonomic levels, was robust to variation in mean egg size and habitat (i.e., freshwater or marine), and was mirrored in independent paired contrasts. Fish with demersal eggs and pelagic larvae were not significantly different from those with pelagic eggs (CV = 3.8%), indicating that selection favoring within-population variation in egg size occurs mainly posthatching and that any such selection occurring prehatching may be less intense. These results suggest that patterns of within-population variation in egg size among fish taxa reflect adaptive processes and that maternal effects on the egg size-fitness function may explain apparent discrepancies from the single-optima Smith-Fretwell model. 相似文献
13.
14.
Do large‐seeded herbs have a small range size? The seed mass–distribution range trade‐off hypothesis 下载免费PDF全文
Judit Sonkoly Balázs Deák Orsolya Valkó Attila Molnár V. Béla Tóthmérész Péter Török 《Ecology and evolution》2017,7(24):11204-11212
We aimed to introduce and test the “seed mass–distribution range trade‐off” hypothesis, that is, that range size is negatively related to seed mass due to the generally better dispersal ability of smaller seeds. Studying the effects of environmental factors on the seed mass and range size of species, we also aimed to identify habitats where species may be at risk and need extra conservation effort to avoid local extinctions. We collected data for seed mass, global range size, and indicators for environmental factors of the habitat for 1,600 species of the Pannonian Ecoregion (Central Europe) from the literature. We tested the relationship between species’ seed mass, range size, and indicator values for soil moisture, light intensity, and nutrient supply. We found that seed mass is negatively correlated with range size; thus, a seed mass–distribution range trade‐off was validated based on the studied large species pool. We found increasing seed mass with decreasing light intensity and increasing nutrient availability, but decreasing seed mass with increasing soil moisture. Range size increased with increasing soil moisture and nutrient supply, but decreased with increasing light intensity. Our results supported the hypothesis that there is a trade‐off between seed mass and distribution range. We found that species of habitats characterized by low soil moisture and nutrient values but high light intensity values have small range size. This emphasizes that species of dry, infertile habitats, such as dry grasslands, could be more vulnerable to habitat fragmentation or degradation than species of wet and fertile habitats. The remarkably high number of species and the use of global distribution range in our study support our understanding of global biogeographic processes and patterns that are essential in defining conservation priorities. 相似文献
15.
Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best? 下载免费PDF全文
Valerie Steen Helen R. Sofaer Susan K. Skagen Andrea J. Ray Barry R. Noon 《Ecology and evolution》2017,7(21):8841-8851
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross‐validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland‐dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross‐validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross‐validation results were correlated with extrapolation results, the use of cross‐validation performance metrics to guide modeling choices where knowledge is limited was supported. 相似文献
16.
- Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant–insect interactions shape levels of plant fitness and can have interactive effects.
- By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators.
- Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter‐treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non‐infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore.
- Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators.
17.
Jan C Biro 《Theoretical biology & medical modelling》2008,5(1):16
Background
There is a 3-fold redundancy in the Genetic Code; most amino acids are encoded by more than one codon. These synonymous codons are not used equally; there is a Codon Usage Bias (CUB). This article will provide novel information about the origin and evolution of this bias. 相似文献18.
19.
Robert J. Fletcher Jr. 《Oikos》2009,118(8):1139-1147
Recent theory suggests that attraction to conspecifics during habitat selection can be one potential, yet untested, mechanism for animal sensitivity to habitat fragmentation. The least flycatcher Empidonax minimus , a highly territorial migratory bird, has previously been shown to be attracted to conspecifics and sensitive to patch size by avoiding small patches of riparian forest in Montana, USA. I used a large-scale field experiment in this region to test the conspecific attraction hypothesis for explaining sensitivity to patch size, and I supplemented this experiment by estimating whether vegetation structure, nest predation, or nest parasitism rates could better explain patterns of sensitivity to patch size. Vegetation structure did not vary consistently with patch size, based on a random sample of patches across 150 km of the Madison and Missouri Rivers, Montana. Nest predation and parasitism rates by brown-headed cowbirds Molothrus ater also did not vary with patch size during the experiment. However, when conspecific cues were simulated across a gradient of patch sizes, flycatchers settled in all patches – and their sensitivity to patch size vanished – providing strong support for the conspecific attraction hypothesis. These results provide the first experimental evidence that attraction to conspecifics can indeed help explain area sensitivity in nature and highlight how understanding the role of animal behavior in heterogeneous landscapes can aid in interpreting pressing conservation issues. 相似文献
20.
Aim We studied pteridophyte species richness between 100 m and 3400 m along a Neotropical elevational gradient and tested competing hypotheses for patterns of species richness. Location Elevational transects were situated at Volcán Barva in the Braulio Carrillo National Park and La Selva Biological Station (100–2800 m) and Cerro de la Muerte (2700–3400 m), both on the Atlantic slope of Costa Rica, Central America. Method We analysed species richness on 156 plots of 20 × 20 m and measured temperature and humidity at four elevations (40, 650, 1800 and 2800 m). Species richness patterns were regressed against climatic variables (temperature, humidity, precipitation and actual evapotranspiration), regional species pool, area and predicted species number of a geometric null model (the mid‐domain effect, MDE). Results The species richness of the 484 recorded species showed a hump‐shaped pattern with elevation with a richness peak at mid‐elevations (c. 1700 m). The MDE was the single most powerful explanatory variable in linear regression models, but species richness was also associated strongly with climatic variables, especially humidity and temperature. Area and species pool were associated less strongly with observed richness patterns. Main conclusions Geometric models and climatic models exclusive of geometric constraints explained comparable amounts of the elevational variation in species richness. Discrimination between these two factor complexes is not possible based on model fits. While overall fits of geometric models were high, large‐ and small‐ranged species were explained by geometric models to different extents. Species with narrow elevational ranges clustered at both ends of the gradient to a greater extent than predicted by the MDE null models used here. While geometric models explained much of the pattern in species richness, we cannot rule out the role of climatic factors (or vice versa) because the predicted peak in richness from geometric models, the empirical peak in richness and the overlap in favourable environmental conditions all coincide at middle elevations. Mid‐elevations offer highest humidity and moderate temperatures, whereas at high elevations richness is reduced due to low temperatures, and at low elevations by reduced water availability due to high temperatures. 相似文献