首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence.  相似文献   

2.
3.
Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine‐Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of Lglacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming.  相似文献   

4.
This study investigated the effects of climate oscillations on the evolution of two closely related Allium species, A. neriniflorum and A. tubiflorum. We sequenced three cp DNA (cpDNA) fragments (rps16, rpl32‐trnL, and trnD‐trnT, together approximately 2,500 bp in length) of two closely related Allium species, with samples from 367 individuals in 47 populations distributed across the total range of these species. The interspecific and intraspecific divergence times of the two species were in the Quaternary glaciation. The population divergence was high for the cpDNA variation, suggesting a significant phylogeographic structure (NST = 0.844, GST = 0.798, p < 0.05). Remarkable ecological differentiation was also revealed by Niche models and statistical analyses. Our results suggest the speciation event of the two species was triggered by violent climatic changes during the Quaternary glaciation.  相似文献   

5.
In recent years, there have been considerable efforts to restore degraded tropical montane forests through active restoration using indigenous tree species. However, little is known about how these species used for restoration influence other species. In this study, two potential restoration species, Albizia gummifera and Neoboutonia macrocalyx, are investigated with regard to the relationship between their density and the abundance and richness of other plant species. The study was conducted in a degraded forest consisting of disturbed transition zones and secondary forest. Our results show positive relationships between the density of A. gummifera and the abundance of tree seedling and sapling richness in the transition zones and in the secondary forest. Shrub richness was negatively related to the density of A. gummifera. Abundance and richness of tree saplings and shrubs were positively related to N. macrocalyx density both in the transition zones and in the secondary forest. Herb species richness declined with N. macrocalyx density in the transition zones but increased with N. macrocalyx density in the secondary forest. The positive relationships between the density of the two tree species and species richness of other woody species suggest that both A. gummifera and N. macrocalyx can be suitable for active restoration of degraded mountain forests within their natural range.  相似文献   

6.
7.
8.
9.
Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter‐ and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process.  相似文献   

10.
The evolutionary history and classification of epiphyllous cryptogams are still poorly known. Leptolejeunea is a largely epiphyllous pantropical liverwort genus with about 25 species characterized by deeply bilobed underleaves, elliptic to narrowly obovate leaf lobes, the presence of ocelli, and vegetative reproduction by cladia. Sequences of three chloroplast regions (rbcL, trnL‐F, psbA) and the nuclear ribosomal ITS region were obtained for 66 accessions of Leptolejeunea and six outgroup species to explore the phylogeny, divergence times, and ancestral areas of this genus. The phylogeny was estimated using maximum‐likelihood and Bayesian inference approaches, and divergence times were estimated with a Bayesian relaxed clock method. Leptolejeunea likely originated in Asia or the Neotropics within a time interval from the Early Eocene to the Late Cretaceous (67.9 Ma, 95% highest posterior density [HPD]: 47.9–93.7). Diversification of the crown group initiated in the Eocene or early Oligocene (38.4 Ma, 95% HPD: 27.2–52.6). Most species clades were established in the Miocene. Leptolejeunea epiphylla and L. schiffneri originated in Asia and colonized African islands during the Plio‐Pleistocene. Accessions of supposedly pantropical species are placed in different main clades. Several monophyletic morphospecies exhibit considerable sequence variation related to a geographical pattern. The clear geographic structure of the Leptolejeunea crown group points to evolutionary processes including rare long‐distance dispersal and subsequent speciation. Leptolejeunea may have benefitted from the large‐scale distribution of humid tropical angiosperm forests in the Eocene.  相似文献   

11.
The temporal and spatial origins and evolution of the genus Eranthis have not been previously studied. We investigated the speciation and establishment histories of four Eranthis species: Eranthis byunsanensis, E. pungdoensis, E. stellata, and E. pinnatifida. The sampling localities were Korea, Japan, Jilin in China, and the area near Vladivostok in Primorskiy, Russia. We used 12 chloroplast microsatellite loci (n = 935 individuals) and two chloroplast noncoding regions (rpl16 intron, petLpsbE intergenic spacer; n = 33 individuals). The genetic diversity, genetic structure, phylogenetic relationships of the four species were analyzed, and their ancestral areas were reconstructed. The high genetic diversity of the Jeju island population of E. byunsanensis and Russian populations of E. stellata indicated these species’ northward and southward dispersal, respectively. The genetic structure analyses suggest that the populations in these four species have limited geographical structure, except for the Chinese E. stellata population (SCP). The phylogenetic analyses suggest that E. byunsanensis and E. pinnatifida are sister species and that Chinese SCP may not belong to E. stellata. The ancestral area reconstruction revealed that the most recent common ancestor of the four species existed in the current Chinese habitat of E. stellata. This study shows that E. byunsanensis and E. pinnatifida originated from a southern Eranthis species and speciated into their current forms near Jeju island and near western regions of Japan, respectively, during the Miocene. E. stellata may have dispersed southward on and near the Korean peninsula, though its specific origin remains unclear. Interestingly, the Chinese E. stellata population SCP suggests that the Chinese population might be most ancient among all the four Eranthis species. E. pungdoensis may have allopatrically speciated from E. byunsanensis during the Holocene. The Korean peninsula and the surrounding areas can be considered interesting regions which provide the opportunity to observe both northern‐ and southern‐sourced Eranthis species.  相似文献   

12.
13.
14.
15.
It has been hypothesized that species occurring in the eastern and the western Qinghai–Tibet Plateau (QTP) responded differently to climate changes during the Pleistocene. Here, we test this hypothesis by phylogeographic analysis of two sister species, Allium cyathophorum and A. spicata. We sequenced two chloroplast DNA (cpDNA) fragments (accD‐psaI and the rpl16 intron) of 150 individuals, and the nuclear (ITS) region of 114 individuals, from 19 populations throughout the distributional ranges of these species. The divergence between the two species was dated at 779 ‐ 714 thousand years before the present and was likely initiated by the most major glaciation in the QTP. Analysis of chlorotype diversity showed that A. spicata, the species occurring in the western QTP, contains much lower genetic diversity (0.25) than A. cyathophorum (0.93), which is distributed in the eastern QTP. Moreover, multiple independent tests suggested that the A. spicata population had expanded recently, while no such expansion was detected in A. cyathophorum, indicating a contrasting pattern of responses to Pleistocene climate changes. These findings highlight the importance of geographical topography in determining how species responded to the climate changes that took place in the QTP during the Pleistocene.  相似文献   

16.
An outstanding issue in the study of insect host races concerns the idea of ‘recursive adaptive divergence’, whereby adaptation can occur repeatedly across space and/or time, and the most recent adaptive episode is defined by one or more previously similar cases. The host plant shift of the apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae, Carpomyini), from ancestral downy hawthorn [Crataegus mollis (Torr. & A. Gray) Scheele] to introduced, domesticated apple (Malus domestica Borkh.) in the eastern USA has long served as a model system for investigating ecologically driven host race formation in phytophagous insect specialists. Here, we report results from an annual geography survey of eclosion time demonstrating a similar ecological pattern among nascent host-associated populations of the fly recently introduced ca. 40 years ago from its native range in the east into the Pacific Northwest (PNW) region of the USA. Specifically, using data collected from 25 locations across 5 years, we show that apple-infesting fly populations in the PNW have rapidly and repeatedly shifted (and maintained differences in) their adult eclosion life-history timing to infest two novel hawthorn hosts with different fruiting phenologies – a native species (Crataegus douglasii Lindl.) and an introduced species (Crataegus monogyna Jacq.) – generating partial allochronic reproductive isolation in the process. The shifts in the PNW parallel the classic case of host race formation in the eastern USA, but have occurred bi-directionally to two hawthorn species with phenologies slightly earlier (black hawthorn) and significantly later (ornamental hawthorn) than apple. Our results imply that R. pomonella can both possess and retain extensive-standing variation (i.e., ‘adaptive memory’) in diapause traits, even following introductions, to rapidly and temporally track novel phenological host opportunities when they arise. Thus, ‘specialized’ host races may not constitute evolutionary dead ends. Rather, adaptive phenotypic and genetic memory may carry over from one host shift to the next, recursively facilitating host race formation in phytophagous insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号