首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at‐sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red‐footed booby, brown noddy, white tern, and wedge‐tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red‐footed booby and wedge‐tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red‐footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat‐free and rat‐invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use‐age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red‐footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.  相似文献   

2.
Aim We assessed population differentiation and gene flow across the range of the blue‐footed booby (Sula nebouxii) (1) to test the generality of the hypothesis that tropical seabirds exhibit higher levels of population genetic differentiation than their northern temperate counterparts, and (2) to determine if specialization to cold‐water upwelling systems increases dispersal, and thus gene flow, in blue‐footed boobies compared with other tropical sulids. Location Work was carried out on islands in the eastern tropical Pacific Ocean from Mexico to northern Peru. Methods We collected samples from 173 juvenile blue‐footed boobies from nine colonies spanning their breeding distribution and used molecular markers (540 base pairs of the mitochondrial control region and seven microsatellite loci) to estimate population genetic differentiation and gene flow. Our analyses included classic population genetic estimation of pairwise population differentiation, population growth, isolation by distance, associations between haplotypes and geographic locations, and analysis of molecular variance, as well as Bayesian analyses of gene flow and population differentiation. We compared our results with those for other tropical seabirds that are not specialized to cold‐water upwellings, including brown (Sula leucogaster), red‐footed (S. sula) and masked (S. dactylatra) boobies. Results Blue‐footed boobies exhibited weak global population differentiation at both mitochondrial and nuclear loci compared with all other tropical sulids. We found evidence of high levels of gene flow between colonies within Mexico and between colonies within the southern portion of the range, but reduced gene flow between these regions. We also found evidence for population growth, isolation by distance and weak phylogeographic structure. Main conclusions Tropical seabirds can exhibit weak genetic differentiation across large geographic distances, and blue‐footed boobies exhibit the weakest population differentiation of any tropical sulid studied thus far. The weak population genetic structure that we detected in blue‐footed boobies may be caused by increased dispersal, and subsequently increased gene flow, compared with other sulids. Increased dispersal by blue‐footed boobies may be the result of the selective pressures associated with cold‐water upwelling systems, to which blue‐footed boobies appear specialized. Consideration of foraging environment may be particularly important in future studies of marine biogeography.  相似文献   

3.
Parasites are a major risk for group‐living animals and seabirds are notoriously susceptible to ectoparasite infestations because they commonly nest in dense colonies. Ticks parasitize seabirds across all biogeographical regions and they can be particularly harmful to nestlings, but the ecological factors that affect their transmission to chicks are little studied and poorly understood. Here we show that abundance of tick larvae in blue‐footed booby Sula nebouxii broods varies with local nest synchrony and density, and also with habitat structure: abundance increased with local breeding synchrony, was linearly and quadratically related to local nest density, and was highest toward the southern end of the study area which has suitable (boulder‐rich) habitat for ticks. Also, with increasing chick age infestation first increased and then declined. The results of this study highlight how local physical and social environmental factors influence infestation of seabird nestlings by ticks.  相似文献   

4.
Seabird population changes are good indicators of long-term and large-scale change in marine ecosystems, and important because of their many impacts on marine ecosystems. We assessed the population trend of the world’s monitored seabirds (1950–2010) by compiling a global database of seabird population size records and applying multivariate autoregressive state-space (MARSS) modeling to estimate the overall population trend of the portion of the population with sufficient data (i.e., at least five records). This monitored population represented approximately 19% of the global seabird population. We found the monitored portion of the global seabird population to have declined overall by 69.7% between 1950 and 2010. This declining trend may reflect the global seabird population trend, given the large and apparently representative sample. Furthermore, the largest declines were observed in families containing wide-ranging pelagic species, suggesting that pan-global populations may be more at risk than shorter-ranging coastal populations.  相似文献   

5.
The wood duck (Aix sponsa) is a common and important cavity-nesting duck in North America; however, we know very little about how changes in vital rates influence population growth rate (λ). We used estimates of fertility and survival of female wood ducks from our nest-box studies in South Carolina, Alabama, and Georgia, USA, to create a stage-based matrix population model. We conducted perturbation analyses and ranked elasticity values to examine the relative importance of 17 component vital rates to λ. Female survival is influenced by nest success, so we recognized this female heterogeneity in our analyses. Four vital rates showed the greatest importance to λ. Analytic elasticities were greatest for breeding season and nonbreeding season survival of females that nested successfully, followed by nest success and female recruitment to the breeding population. Differences in female quality were important to λ. Next, we used process variation of vital rates and conducted life-stage simulation analyses (LSA) followed by variance decomposition to determine the amount of variation in λ explained by each vital rate. Female recruitment to the breeding population explained 57.7% of the variation in λ followed by nest success (11.4%), and breeding and nonbreeding season survival of females that nested successfully (9.3% and 9.4%, respectively). Together these 4 vital rates explained 88% of the variation in λ. Mean asymptotic population growth rate (λ = 0.80 ± 0.08 [SD]) from LSA revealed a declining population. Recruitment of females hatched from nest boxes was insufficient to sustain the nest-box population. However, including yearling (SY) females that were produced outside of nest boxes (i.e., immigrants) increased recruitment rates 1.5 to 2 times more than when only SY females recruited from nest boxes were included. Future research that examines how emigration and immigration interact with survival and reproduction to influence local population dynamics of wood ducks will be important for identifying the value of nest-box programs to wood duck conservation and management. © 2019 The Wildlife Society.  相似文献   

6.
Populations of Afro‐Palearctic migrant birds have shown severe declines in recent decades. To identify the causes of these declines, accurate measures of both demographic rates (seasonal productivity, apparent survival, immigration) and environmental parameters will allow conservation and research actions to be targeted effectively. We used detailed observations of marked breeding birds from a ‘stronghold’ population of whinchats Saxicola rubetra in England (stable against the declining European trend) to reveal both on‐site and external mechanisms that contribute to population change. From field data, a population model was developed based on demographic rates from 2011 to 2014. Observed population trends were compared to the predicted population trends to assess model‐accuracy and the influence of outside factors, such as immigration. The sensitivity of the projected population growth rate to relative change in each demographic rate was also explored. Against expectations of high productivity, we identified low seasonal breeding success due to nocturnal predation and low apparent first‐year survival, which led to a projected population growth rate (λ) of 0.818, indicating a declining trend. However, this trend was not reflected in the census counts, suggesting that high immigration was probably responsible for buffering against this decline. Elasticity analysis indicated λ was most sensitive to changes in adult survival but with covariance between demographic rates accounted for, most temporal variation in λ was due to variation in productivity. Our study demonstrates that high quality breeding habitat can buffer against population decline but high immigration and low productivity will expose even such stronghold populations to potential decline or abandonment if either factor is unsustainable. First‐year survival also appeared low, however this result is potentially confounded by high natal dispersal. First‐year survival and/or dispersal remains a significant knowledge gap that potentially undermines local solutions aimed at counteracting low productivity.  相似文献   

7.
Many plant species currently exist in fragmented populations of different sizes, while they also experience unpredictable climatic fluctuation over time. However, we still understand little about how plant demography responds to such spatial and temporal environmental variability. We studied population dynamics of an understory perennial herb Trillium camschatcense in the Tokachi plain of Hokkaido, Japan, where a significant effect of forest fragmentation on seedling recruitment was previously reported. Four populations across a range of fragment sizes were studied for 6 years, and the data were analyzed using matrix population models. Per capita fecundity (the number of recruits per plant) varied greatly among populations, but the variation in population growth rates (λ) was mainly driven by the variation in stasis and growth rates, suggesting that the general trend of reduced fecundity in fragmented populations may not be readily translated into subsequent dynamics. Temporal variation in λ among years was more than 2 times larger than spatial variation among populations, and this result was likely attributable to the contrasting response of correlation structures among demographic rates. The among-population variation in λ was dampened by negative covariation between matrix elements possibly due to density-dependent regulation as well as an inherent constraint that some elements are not independent, whereas positive covariation between matrix elements resulted in large temporal variation in λ. Our results show that population dynamics responded differently to habitat fragmentation and temporal variability of the environment, emphasizing the need to discriminate these spatial and temporal variations in demographic models. Although no populations were projected to be declining in stochastic simulations, correlation between current habitat size and plant density implies historical λ is positively related to habitat size.  相似文献   

8.
Peripheral populations have long been predicted to show lower vital rates, higher demographic fluctuations, and lower densities than central populations. However, recent research has questioned the existence of clear patterns across species’ ranges. To test these hypotheses, we monitored five central and six northern peripheral populations of the widespread herb Plantago coronopus along the European Atlantic coast during 5 yr. We estimated population density, and calculated mean values and temporal variability of four vital rates (survival, individual growth, fecundity and recruitment) in hundreds of plants in permanent plots. Central populations showed higher fecundity, whereas peripheral populations had higher recruitment per reproductive plant, indicating a higher overall reproductive success in the periphery. Central populations showed a marginally significant tendency for higher growth, and there were no differences between range positions in survival. Fecundity and growth were affected by intraspecific competition, and recruitment was affected by precipitation, highlighting the importance of local environmental conditions for population performance. Central and peripheral populations showed no significant differences in temporal variability of vital rates. Finally, density was significantly higher in peripheral than in central populations, in discrepancy with the abundant‐centre model. Density was correlated to seedling recruitment, which would counterbalance in peripheral populations the lower fecundity and the tendency for lower growth of established plants. Such compensations among vital rates might be particularly common in widespread plants, and advise against simplistic assumptions of population performance across ranges. The whole species’ life cycle should be considered, since different arrangements of vital rates are expected to maximize fitness in local environments. Our results show also the importance of discerning between geographical periphery and ecological marginality. In a context of climate‐induced range shifts, these considerations are crucial for the reliability of niche‐models and the management of plant peripheral populations.  相似文献   

9.
Empirical studies for different life histories have shown an inverse relationship between elasticity (i.e. the proportional contribution to population growth rate) and temporal variation in vital rates. It is accepted that this relationship indicates the effect of selective pressures in reducing variation in those life‐history traits with a major impact on fitness. In this paper, we sought to determine whether changes in environmental conditions affect the relationship between elasticity of vital rates and their temporal variation, and whether vital rates with simultaneously large elasticity and temporal variation might represent a characteristic life‐history strategy. We used demographic data on 13 populations of the short‐lived Hypericum cumulicola over 5–6 years, in three time‐since‐fire classes. For each population of each time‐since‐fire, we computed the mean matrix over years and its respective elasticity matrix, and the coefficients of variation in matrix entries over study years as an estimate of temporal variability. We found that mean elasticity negatively significantly correlated with temporal variation in vital rates in populations (overall eight out of 13) included in each time‐since‐fire. However, seedling recruitment exhibited both high elasticity and high temporal variation in almost all study populations. These results indicated that (1) the general relationship between elasticity and temporal variation in vital rates was not modified by environmental changes due to time‐since‐fire, and (2) high elasticity and high temporal variation in seedling recruitment in H. cumulicola is a particular trait of the species' life history. After seed survival in the soil seed bank, seedling recruitment represents the most important life‐history trait influencing H. cumulicola population growth rate (and fitness). The high temporal variability in seedling recruitment suggests that this trait is determined by environmental cues, leading to an increase in population size and subsequent replenishment of the seed bank in favorable years.  相似文献   

10.
11.
Aim We examined patterns of covariation among piscivorous and planktivorous seabirds breeding at St Lazaria Island in order to evaluate their responses to interannual changes in sea surface temperature, a variable that affects marine food webs. In addition, we evaluated seabird population trends for responses to decadal‐scale changes in the marine ecosystem. Location St Lazaria Island, Sitka Sound, Alaska. Methods Established seabird monitoring protocols for the Alaska Maritime National Wildlife Refuge were followed in estimating population trends, the timing of nesting events and the reproductive success of eight species of seabirds between 1994 and 2006. Results  Population increases were noted for storm‐petrels (Oceanodroma furcata and O. leucorhoa), rhinoceros auklets (Cerorhinca monocerata) and glaucous‐winged gulls (Larus glaucescens). We found no population trend for pelagic cormorants (Phalacrocorax pelagicus), but it appeared that populations of common (Uria aalge) and thick‐billed (U. lomvia) murres and of tufted puffins (Fratercula cirrhata) declined. We detected no linear trends in either breeding chronology or reproductive success over the study period for any seabird. All species of piscivorous seabirds apparently responded similarly to environmental cues as there was a positive covariation among species in the timing of nesting. Piscivores tended to nest earlier, and most species had higher rates of reproductive success in years with relatively warm spring sea temperatures. In contrast, planktivorous Leach’s storm‐petrels (O. leucorhoa) tended to nest earlier when spring and summer sea temperatures were relatively cool. Clearly, seabirds at St Lazaria were responding to interannual changes in sea temperatures near the breeding colony, probably as a result of effects on the food webs. Main conclusions Every seabird species we monitored at St Lazaria exhibited significant population trends between 1994 and 2006. For most species there appeared to be a relationship between both the timing of nesting and reproductive rates and spring or summer sea surface temperatures. Responses at both decadal (populations) and interannual (timing and reproductive success) scales make seabirds useful candidates for helping to monitor change in the marine environment.  相似文献   

12.
Habitat fragmentation and loss affect population stability and demographic processes, increasing the extinction risk of species. We studied Anolis heterodermus populations inhabiting large and small Andean scrubland patches in three fragmented landscapes in the Sabana de Bogotá (Colombia) to determine the effect of habitat fragmentation and loss on population dynamics. We used the capture‐mark‐recapture method and multistate models to estimate vital rates for each population. We estimated growth population rate and the most important processes that affect λ by elasticity analysis of vital rates. We tested the effects of habitat fragmentation and loss on vital rates of lizard populations. All six isolated populations showed a positive or an equilibrium growth rate (λ = 1), and the most important demographic process affecting λ was the growth to first reproduction. Populations from landscapes with less scrubland natural cover showed higher stasis of young adults. Populations in highly fragmented landscapes showed highest juvenile survival and growth population rates. Independent of the landscape's habitat configuration and connectivity, populations from larger scrubland patches showed low adult survivorship, but high transition rates. Populations varied from a slow strategy with low growth and delayed maturation in smaller patches to a fast strategy with high growth and early maturation in large patches. This variation was congruent with the fast‐slow continuum hypothesis and has serious implications for Andean lizard conservation and management strategies. We suggest that more stable lizard populations will be maintained if different management strategies are adopted according to patch area and habitat structure.  相似文献   

13.
To predict the impact of climate change over the whole species distribution range, comparison of adult survival variations over large spatial scale is of primary concern for long-lived species populations that are particularly susceptible to decline if adult survival is reduced. In this study, we estimated and compared adult survival rates between 1989 and 1997 of six populations of Cory's shearwater ( Calonectris diomedea ) spread across 4600 km using capture–recapture models. We showed that mean annual adult survival rates are different among populations along a longitudinal gradient and between sexes. Variation in adult survival is synchronized among populations, with three distinct groups: (1) both females and males of Corsica, Tremiti, and Selvagem (annual survival range 0.88–0.96); (2) both females and males of Frioul and females from Crete (0.82–0.92); and (3) both females and males of Malta and males from Crete (0.74–0.88). The total variation accounted for by the common pattern of variation is on average 71%, suggesting strong environmental forcing. At least 61% of the variation in survival is explained by the Southern Oscillation Index fluctuations. We suggested that Atlantic hurricanes and storms during La Niña years may increase adult mortality for Cory's shearwater during winter months. For long-lived seabird species, variation in adult survival is buffered against environmental variability, although extreme climate conditions such as storms significantly affect adult survival. The effect of climate at large spatial scales on adult survival during the nonbreeding period may lead to synchronization of variation in adult survival over the species' range and has large effects on the meta-population trends. One can thus worry about the future of such long-lived seabirds species under the predictions of higher frequency of extreme large-scale climatic events.  相似文献   

14.
Spatiotemporal variation in survival may be an important driver of multi‐population dynamics in many wild animal species, yet few scientific studies have addressed this issue, primarily due to a lack of sufficiently comprehensive and detailed datasets. Synchrony in survival rates among different, often distant, subpopulations appears to be common, caused by spatially correlated environmental conditions or by movement of animals from different sites such that their ranges overlap. Many seabird populations are effectively isolated during the breeding season because colonies are widely separated, but over the winter, birds disperse widely and there may be much mixing between different populations. The non‐breeding season is also the period of main mortality for seabirds. Using mark–recapture and ring‐recovery data, we tested for spatial, temporal and age‐related correlations in survival of Common Guillemots Uria aalge among three widely separated Scottish colonies that have varying overlap in their overwintering distributions. Survival was highly correlated over time for colonies/age‐classes sharing wintering areas and, except in 2004, was essentially uncorrelated for those with separate wintering areas. These results strongly suggest that one or more aspects of the winter environment are responsible for spatiotemporal variation in survival of British Guillemots, and provide insight into the factors driving large‐scale population dynamics of the species.  相似文献   

15.
Demographic rates such as recruitment and survival probability can vary considerably among populations of the same species due to variation in underlying environmental processes. If environmental processes are spatially correlated, nearby populations are expected to have more similar demographic rates than those further apart. Breeding populations and foraging ranges are spatially segregated in colonial seabirds, making them ideal for studying spatial patterns in demographic rates and their effects on local population dynamics. Here we explored variation in age-dependent survival probabilities across 14 colonies of Herring Gulls Larus argentatus breeding along the Dutch North Sea coast. We used long-term mark–recapture data of marked fledglings to estimate survival, and estimated spatial autocorrelation of survival probabilities. We assessed whether survival until recruitment age or until 10 years old (close to their expected lifespan) explained variation in population trajectories of each colony. Juvenile and adult survival showed a strong, but different, north-to-south gradient in survival probability, with lower juvenile but higher adult survival in northern colonies than southern colonies, whereas the spatial pattern of immature survival was less distinct. Neither recruitment nor the proportion of 10-year-old adults alive predicted whether a colony collapsed, declined, remained stable or increased. The distinct spatial pattern in survival suggests variation in regional food availability, which do not seem to drive local population dynamics. The absence of a link between survival and colony trajectories implies that connectivity between populations plays an important role affecting population dynamics.  相似文献   

16.
Populations of large herbivores are generally considered to be food limited, escaping the regulatory effects of predation through their large body size, migratory behaviour and/or the occurrence of alternate prey species. In the Australian arid and semi‐arid zones, the availability of forage biomass is considered to be the primary driver of fluctuations in kangaroo abundance. However, little is known about the population dynamics of the smaller sympatric macropods. We examined the demographic traits of a large colony of yellow‐footed rock‐wallabies (Petrogale xanthopus celeris), following a 2‐year period of above average rainfall. The population was located within a conservation reserve that was subject to a predator control program around its perimeter and on neighbouring properties. The low predator abundance provided an opportunity to gauge the strength of bottom‐up population processes. During the two years of the study, the population declined in size by 53%, resulting from both the virtual absence of juvenile recruitment and the loss of adult wallabies. Although reproductive output was high, low pouch young and juvenile survival rates resulted in few individuals progressing into the adult population. With minimal recruitment, the rate of population decline (r = 0.77) matched the observed adult survival rate (Φ = 0.76). Despite average rainfall conditions during the study, survival rates across all age‐classes were equivalent to those reported for other rock‐wallaby populations during periods of scarcity. The reduced survival rates were attributed to low levels of forage resources, particularly around the wallabies' refuge sites, suggesting the bottom‐up regulation of the colony at high densities. The data suggest that the colony was at temporarily high abundance, following a rainfall driven pulse of recruitment. Conservation management actions for this species should focus on increasing juvenile survival rates within declining populations, through the control of feral goats (Capra hircus), rabbits (Oryctolagus cuniculus) and red foxes (Vulpes vulpes).  相似文献   

17.
Competition for food is widely cited as an important cost of coloniality among birds and much of the evidence in support of this hypothesis comes from studies of colonial piscivorous seabirds. However, for generalist seabirds able to switch between different prey types, the role of food availability in relation to colony size is unclear. Here we investigate patterns of the consumption of seabird prey in relation to colony size in a generalist seabird, the great skua Stercorarius skua, in Shetland, UK. At the population level skuas feed mainly on sandeels Ammodytes marinus and fishery discards, but respond to declines in fish availability to facultatively prey on other seabirds. By comparing the consumption of seabirds among seven different sized colonies, including one colony with artificially reduced numbers of skuas (Fair Isle), we investigate whether consumption of seabird prey is influenced by skua population size, while simultaneously measuring seabird prey availability. Data from five years also enables us to investigate the influence of annual variation in environmental conditions on seabird consumption. Using measures of body condition and reproductive performance we investigate the consequences of living in different sized colonies, which may provide insight into ultimate costs of nesting at high population density. Skua diets varied among colonies and the proportion of seabird prey in the diet was inversely related to skua colony size, despite similar per capita numbers of seabirds across colonies. At the colony where their numbers were artificially suppressed, skuas consumed a greater proportion of seabirds per capita. Highly significant year effects in seabird predation were observed but the pattern among colonies remained consistent over time. Two measures of adult body condition (pectoral muscle index and mean corpuscular volume) revealed that adult great skuas were in poorer condition at the largest colony (Foula), but reproductive performance did not alter significantly among colonies. This study provides evidence that intra‐specific competition among skuas may limit opportunities for obtaining seabird prey, which may be particularly important during periods of poor availability of sandeels and fishery discards, and has implications for assessing the impact of skuas on seabird populations.  相似文献   

18.
To test the hypothesis that both physical and ecological barriers to gene flow drive population differentiation in tropical seabirds, we surveyed mitochondrial control region variation in 242 brown boobies (Sula leucogaster), which prefer inshore habitat, and 271 red-footed boobies (S. sula), which prefer pelagic habitat. To determine the relative influence of isolation and gene flow on population structure, we used both traditional methods and a recently developed statistical method based on coalescent theory and Bayesian inference (Isolation with Migration). We found that global population genetic structure was high in both species, and that female-mediated gene flow among ocean basins apparently has been restricted by major physical barriers including the Isthmus of Panama, and the periodic emergence of the Sunda and Sahul Shelves in Southeast Asia. In contrast, the evolutionary history of populations within ocean basins differed markedly between the two species. In brown boobies, we found high levels of population genetic differentiation and limited gene flow among colonies, even at spatial scales as small as 500 km. Although red-footed booby colonies were also genetically differentiated within ocean basins, coalescent analyses indicated that populations have either diverged in the face of ongoing gene flow, or diverged without gene flow but recently made secondary contact. Regardless, gene flow among red-footed booby populations was higher than among brown booby populations. We suggest that these contrasting patterns of gene flow within ocean basins may be explained by the different habitat preferences of brown and red-footed boobies.  相似文献   

19.
Changes in the world's oceans have altered nutrient flow, and affected the viability of predator populations when prey species become unavailable. These changes are integrated into the tissues of apex predators over space and time and can be quantified using stable isotopes in the inert feathers of historical and contemporary avian specimens. We measured δ13C and δ15N values in Flesh‐footed Shearwaters (Puffinus carneipes) from Western and South Australia from 1936–2011. The Flesh‐footed Shearwaters more than doubled their trophic niche (from 3.91 ± 1.37 ‰2 to 10.00 ± 1.79 ‰2), and dropped an entire trophic level in 75 years (predicted δ15N decreased from +16.9 ‰ to + 13.5 ‰, and δ13C from ?16.9 ‰ to ?17.9 ‰) – the largest change in δ15N yet reported in any marine bird, suggesting a relatively rapid shift in the composition of the Indian Ocean food web, or changes in baseline δ13C and δ15N values. A stronger El Niño‐Southern Oscillation results in a weaker Leeuwin Current in Western Australia, and decreased Flesh‐footed Shearwater δ13C and δ15N. Current climate forecasts predict this trend to continue, leading to increased oceanic ‘tropicalization' and potentially competition between Flesh‐footed Shearwaters and more tropical sympatric species with expanding ranges. Flesh‐footed Shearwater populations are declining, and current conservation measures aimed primarily at bycatch mitigation are not restoring populations. Widespread shifts in foraging, as shown here, may explain some of the reported decline. An improved understanding and ability to mitigate the impacts of global climactic changes is therefore critical to the long‐term sustainability of this declining species.  相似文献   

20.
For declining wild populations, a critical aspect of effective conservation is understanding when and where the causes of decline occur. The primary drivers of decline in migratory and seasonal populations can often be attributed to a specific period of the year. However, generic, broadly applicable indicators of these season‐specific drivers of population decline remain elusive. We used a multi‐generation experiment to investigate whether habitat loss in either the breeding or non‐breeding period generated distinct signatures of population decline. When breeding habitat was reduced, population size remained relatively stable for several generations, before declining precipitously. When non‐breeding habitat was reduced, between‐season variation in population counts increased relative to control populations, and non‐breeding population size declined steadily. Changes in seasonal vital rates and other indicators were predicted by the season in which habitat loss treatment occurred. Per capita reproductive output increased when non‐breeding habitat was reduced and decreased with breeding habitat reduction, whereas per capita non‐breeding survival showed the opposite trends. Our results reveal how simple signals inherent in counts and demographics of declining populations can indicate which period of the annual cycle is driving declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号