首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most comparative studies of avian blood parasites based on visual inspection of smears have reported Haemoproteus infections to be more prevalent than Plasmodium infections in both tropical and temperate locations. Recently, molecular techniques have increased our ability to detect infections often missed on blood smears. Here we quantify the bias in prevalence resulting from unrecognized infections by examining blood smears of infected passerine birds from the West Indies (312 individuals) and the Ozark Mountains of southern Missouri (134 individuals) for which we could identify parasites based on cytochrome b sequences. In the West Indian sample, 63 of 179 Haemoproteus infections (35%) and 121 of 133 Plasmodium infections (91%) were not detected among ca. 2,800 red blood cells examined per smear. In the Missouri sample, 19 of 77 Haemoproteus infections (25%) and 31 of 57 Plasmodium infections (54%) were not detected among ca. 10,000 red blood cells examined. Clearly, visual inspection of blood smears at this level of effort fails to recognize many malaria parasite infections ascertained by PCR screening, and this bias for Plasmodium parasites exceeds that for Haemoproteus parasites. The lower prevalence of Plasmodium compared to Haemoproteus reported in comparative studies based on blood smears likely reflects differences in detection rather than infection rates. Estimates obtained from visual inspection of blood smears would appear to be more indicative of parasite virulence and how well host individuals control infections than of the prevalence of infections in host populations.  相似文献   

2.
Human induced changes on landscape can alter the biotic and abiotic factors that influence the transmission of vector-borne parasites. To examine how infection rates of vector-transmitted parasites respond to changes on natural landscapes, we captured 330 Blue-black Grassquits (Volatinia jacarina) in Brazilian biomes and assessed the prevalence and diversity of avian haemosporidian parasites (Plasmodium and Haemoproteus) across avian host populations inhabiting environment under different disturbance and climatic conditions. Overall prevalence in Blue-black Grassquits was low (11%) and infection rates exhibited considerable spatial variation, ranging from zero to 39%. Based on genetic divergence of cytochrome b gene, we found two lineages of Haemoproteus (Parahaemoproteus) and 10 of Plasmodium. We showed that Blue-black Grassquit populations inhabiting sites with higher proportion of native vegetation cover were more infected across Brazil. Other landscape metrics (number of water bodies and distance to urban areas) and climatic condition (temperature and precipitation) known to influence vector activity and promote avian malaria transmission did not explain infection probability in Blue-black Grassquit populations. Moreover, breeding season did not explain prevalence across avian host populations. Our findings suggest that avian haemosporidian prevalence and diversity in Blue-black Grassquit populations are determined by recent anthropogenic changes in vegetation cover that may alter microclimate, thus influencing vector activity and parasite transmission.  相似文献   

3.
During moult, stressors such as malaria and related haemosporidian parasites (e.g. Plasmodium and Haemoproteus) could affect the growth rate and quality of feathers, which in turn may compromise future reproduction and survival. Recent advances in molecular methods to study parasites have revealed that co‐infections with multiple parasites are frequent in bird–malaria parasite systems. However, there is no study of the consequences of co‐infections on the moult of birds. In house martins Delichon urbica captured and studied at a breeding site in Europe during 11 yr, we measured the quality and the growth rate of tail feathers moulted in the African winter quarters in parallel with the infection status of blood parasites that are also transmitted on the wintering ground. Here we tested if the infection with two haemosporidian parasite lineages has more negative effects than a single lineage infection. We found that birds with haemosporidian infection had lower body condition. We also found that birds co‐infected with two haemosporidian lineages had the lowest inferred growth rate of their tail feathers as compared with uninfected and single infected individuals, but co‐infections had no effect on feather quality. In addition, feather quality was negatively correlated with feather growth rate, suggesting that these two traits are traded‐off against each other. We encourage the study of haemosporidian parasite infection as potential mechanism driving this trade‐off in wild populations of birds.  相似文献   

4.
Relatively little is known about the effects of specific parasites on sexually selected behavioral traits. We subjected free‐living mountain white‐crowned sparrows (Zonotrichia leucophrys oriantha) to a playback experiment to identify the effect of hemosporidian parasites on potentially sexually selected song characteristics. We recorded song after a playback of a novel white‐crowned sparrow song, meant to simulate a territorial intrusion. Infections with Leucocytozoon or Plasmodium influenced singing behavior, while infection with Haemoproteus had no detectable effect. Specifically, song consistency, as measured using a spectrogram correlation, was influenced by both Plasmodium and Leucocytozoon infection. Additionally, birds infected with Plasmodium sang fewer songs following experimental playback. Thus, relatively widespread parasites, like Plasmodium, may have a strong effect on potentially sexually selected song characteristics.  相似文献   

5.
The lark sparrow (Chondestes grammacus) is a ground-nesting passerine that breeds across much of the central North American steppe and sand barrens. Through genotyping and sequencing of avian malaria parasites we examined levels of malaria prevalence and determined the distribution of Haemoproteus and Plasmodium lineages across the breeding range of the lark sparrow. Analysis of 365 birds collected from five breeding locations revealed relatively high levels of malaria prevalence in adults (80 %) and juveniles (46 %), with infections being primarily of Haemoproteus (91 % of sequenced samples). Levels of genetic diversity and genetic structure of malaria parasites with respect to the avian host populations revealed distinct patterns for Haemoproteus and Plasmodium, most likely as a result of their distinct life histories, host specificity, and transmission vectors. With the exception of one common Haemoproteus haplotype detected in all populations, all other haplotypes were either population-specific or shared by two to three populations. A hierarchical analysis of molecular variance of Haemoproteus sequences revealed that 15–18 % of the genetic variation can be explained by differences among host populations/locations (p < 0.001). In contrast to the regional patterns of genetic differentiation detected for the lark sparrow populations, Haemoproteus parasites showed high levels of population-specific variation and no significant differences among regions, which suggests that the population dynamics of the parasites may be driven by evolutionary processes operating at small spatial scales (e.g., at the level of host populations). These results highlight the potential effects of host population structure on the demographic and evolutionary dynamics of parasites.  相似文献   

6.
Avian malaria parasites (Plasmodium) occur commonly in wild birds and are an increasingly popular model system for understanding host–parasite co‐evolution. However, whether these parasites have fitness consequences for hosts in endemic areas is much debated, particularly since wild‐caught individuals almost always harbour chronic infections of very low parasite density. We used the anti‐malarial drug MalaroneTM to test experimentally for fitness effects of chronic malaria infection in a wild population of breeding blue tits (Cyanistes caeruleus). Medication caused a pronounced reduction in Plasmodium infection intensity, usually resulting in complete clearance of these parasites from the blood, as revealed by quantitative PCR. Positive effects of medication on malaria‐infected birds were found at multiple stages during breeding, with medicated females showing higher hatching success, provisioning rates and fledging success compared to controls. Most strikingly, we found that treatment of maternal malaria infections strongly altered within‐family differences, with reduced inequality in hatching probability and fledging mass within broods reared by medicated females. These within‐brood effects appear to explain higher fledging success among medicated females and are consistent with a model of parental optimism in which smaller (marginal) offspring can be successfully raised to independence if additional resources become available during the breeding attempt. Overall, these results demonstrate that chronic avian malaria infections, far from being benign, can have significant effects on host fitness and may thus constitute an important selection pressure in wild bird populations.  相似文献   

7.
We examined seasonal prevalence in avian haemosporidians (Plasmodium and Haemoproteus) in migrant and resident birds in western Himalaya, India. We investigated how infection with haemosporidians in avian hosts is associated with temporal changes in temperature and mosquito abundance along with host abundance and life‐history traits (body mass). Using molecular methods for parasite detection and sequencing partial cytochrome b gene, 12 Plasmodium and 27 Haemoproteus lineages were isolated. Our 1‐year study from December 2008 to December 2009 in tropical Himalayan foothills revealed a lack of seasonal variation in Plasmodium spp. prevalence in birds despite a strong correlation between mosquito abundance and temperature. The probability of infection with Plasmodium decreased with increase in temperature. Total parasite prevalence and specifically Plasmodium prevalence showed an increase with average avian body mass. In addition, total prevalence exhibited a U‐shaped relationship with avian host abundance. There was no difference in prevalence of Plasmodium spp. or Haemoproteus spp. across altitudes; parasite prevalence in high‐altitude locations was mainly driven by the seasonal migrants. One Haemoproteus lineage showed cross‐species infections between migrant and resident birds. This is the first molecular study in the tropical Himalayan bird community that emphasizes the importance of studying seasonal variation in parasite prevalence. Our study provides a basis for further evolutionary study on the epidemiology of avian malaria and spread of disease across Himalayan bird communities, which may not have been exposed to vectors and parasites throughout the year, with consequential implications to the risk of infection to naïve resident birds in high altitude.  相似文献   

8.
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.  相似文献   

9.
Extra‐pair matings comprise a common reproductive strategy among socially monogamous bird species. However, it remains unclear why females decide to mate with extra‐pair males. Indirect benefits in terms of improving offspring genetic quality are usually invoked to explain this phenomenon. Parasite resistance genes are often considered as a female target of seeking extra‐pair matings, but the direct test of this hypothesis is generally lacking. Here, we report on a relationship between the status of infection with malaria parasites (Plasmodium and Haemoproteus) and occurrence of extra‐pair paternity in a wild population of the blue tit Cyanistes caeruleus inhabiting Gotland (Sweden). We found that the probability of extra‐pair paternity is significantly related to the infection status of social parents. Infected males showed higher probability of being cuckolded than uninfected ones. However, this was observed only among males mated to uninfected females. Thus, avian malaria may potentially contribute to explanation of extra‐pair mating behaviour.  相似文献   

10.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

11.
Many studies have used the avian hemosporidians (Leucocytozoon, Plasmodium, and Hemoproteus) to test hypotheses of host–parasite co‐evolution, yet documented health and survival consequences of these blood parasites vary among studies and generalizations about their pathogenicity are debatable. In general, the negative effects of the hemosporidians are likely to be greatest during acute infections of young birds, yet most previous studies in wild passerines have examined chronic effects in adults. Here, we evaluated responses of nestling American crows (Corvus brachyrhynchos) to acute infection (prevalence and burden), as well as its short‐ and long‐term survival consequences. We used panel of nine hematological and biochemical parameters that are regularly used to evaluate the health of domestic animals, including leukocyte profiles, hematocrit, and plasma proteins. We assessed the effects of infection on survival in a mark‐recapture framework. Overall, 56% of crows (= 321 samples) were infected by at least one of the three genera. Infections by all genera were associated with elevated plasma proteins and globulins, which could indicate an adaptive immune response. However, only Plasmodium infections were associated with low hematocrit (anemia) and lower fledging success, possibly mediated by the negative effect of low hematocrit values on body condition. Moreover, early Plasmodium infection (<40 days of age) had long‐term survival implications: it was associated with lower apparent survival probability within 3 years after fledging. These results suggest that young crows mounted an adaptive immune response to all three genera. Short‐ and long‐term pathological effects, however, were only apparent with Plasmodium infections.  相似文献   

12.
Health impact of blood parasites in breeding great tits   总被引:5,自引:0,他引:5  
Indrek Ots  Peeter Hõrak 《Oecologia》1998,116(4):441-448
Hypotheses of hemoparasite-mediated sexual selection and reproductive costs rely on the assumption that avian blood parasite infections are harmful to their hosts. To test the validity of this assumption, we examined the health impact of Haemoproteus blood parasites on their great tit (Parus major) host. We hypothesised that if blood parasites impose any serious health impact on their avian hosts, then infected individuals must differ from uninfected ones in respect to hemato-serological general health and immune parameters. A 3-year study of two great tit populations, breeding in contrasting (urban and rural) habitats in south-east Estonia, revealed that Haemoproteus blood parasites affected the health state of their avian hosts. Infected individuals had elevated lymphocyte hemoconcentration and plasma gamma-globulin levels, indicating that both cell-mediated and humoral immune response mechanisms are involved in host defence. The effect of parasites on cell-mediated immunity was both age- and sex-specific, as infection status affected peripheral blood lymphocyte counts only in males, and among these, the magnitude of response was greater in old individuals than yearlings. Heterophile hemoconcentration and plasma albumin levels were not affected by infection status, suggesting that blood stages of Haemoproteus infection do not cause a severe inflammatory response. Parasitism was not related to hematocrit values, indicating that Haemoproteus infection does not cause anemia. In two years, infected individuals were heavier than uninfected ones in the urban but not in the rural study area. This suggests, that under certain circumstances (possibly related to reproductive tactics), breeding great tits may avoid losing body mass in order to save resources for an anti-parasite immune response. Received: 16 February 1998 / Accepted: 22 May 1998  相似文献   

13.
We studied the consequences of chronic infections by three different lineages of avian malaria, two Plasmodium (RTSR1, LK6) and one Haemoproteus (LK2), on reproductive performance of Lesser Kestrels (Falco naumanni). Malaria infections in male and female parents had no effect on clutch size, hatching success or nesting success. However, when only successful nests were considered, we found that males parasitized by LK6 raised a lower number of fledglings, suggesting that the level of parental effort by males may be limited by this particular lineage of Plasmodium. This effect was not evident in females, probably due to the higher investment of males during the chick rearing period in this species. Overall, we have found that chronic stages of specific malaria lineages have certain negative consequences on host reproductive performance, highlighting the importance of considering genetic differences among malaria parasites to study their consequences on natural bird populations.  相似文献   

14.
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non‐infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria‐like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild‐caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.  相似文献   

15.
Individuals of migratory species may be more likely to become infected by parasites because they cross different regions along their route, thereby being exposed to a wider range of parasites during their annual cycle. Conversely, migration may have a protective effect since migratory behaviour allows hosts to escape environments presenting a high risk of infection. Haemosporidians are one of the best studied, most prevalent and diverse groups of avian parasites, however the impact of avian host migration on infection by these parasites remains controversial. We tested whether migratory behaviour influenced the prevalence and richness of avian haemosporidian parasites among South American birds. We used a dataset comprising ~ 11,000 bird blood samples representing 260 bird species from 63 localities and Bayesian multi-level models to test the impact of migratory behaviour on prevalence and lineage richness of two avian haemosporidian genera (Plasmodium and Haemoproteus). We found that fully migratory species present higher parasite prevalence and higher richness of haemosporidian lineages. However, we found no difference between migratory and non-migratory species when evaluating prevalence separately for Plasmodium and Haemoproteus, or for the richness of Plasmodium lineages. Nevertheless, our results indicate that migratory behaviour is associated with an infection cost, namely a higher prevalence and greater variety of haemosporidian parasites.  相似文献   

16.
Although malaria parasites infecting non‐human primates are important models for human malaria, little is known of the ecology of infection by these parasites in the wild. We extensively sequenced cytochrome b (cytb) of malaria parasites (Apicomplexa: Haemosporida) from free‐living southeast Asian monkeys Macaca nemestrina and Macaca fascicularis. The two most commonly observed taxa were Plasmodium inui and Hepatocystis sp., but certain other sequences did not cluster closely with any previously sequenced species. Most of the major clades of parasites were found in both Macaca species, and the two most commonly occurring parasite infected the two Macaca species at approximately equal levels. However, P. inui showed evidence of genetic differentiation between the populations infecting the two Macaca species, suggesting limited movement of this parasite among hosts. Moreover, coinfection with Plasmodium and Hepatocystis species occurred significantly less frequently than expected on the basis of the rates of infection with either taxon alone, suggesting the possibility of competitive exclusion. The results revealed unexpectedly complex communities of Plasmodium and Hepatocystis taxa infecting wild southeast Asian monkeys. Parasite taxa differed with respect to both the frequency of between‐host movement and their frequency of coinfection.  相似文献   

17.
Aim (1) To describe the species–area relationships among communities of Plasmodium and Haemoproteus parasites in different island populations of the same host genus (Aves: Zosterops). (2) To compare distance–decay relationships (turnover) between parasite communities and those with potential avian and dipteran hosts, which differ with respect to their movement and potential to disperse parasite species over large distances. Location Two archipelagos in the south‐west Pacific, Vanuatu and New Caledonia (c. 250 km west of Vanuatu) and its Loyalty Islands, with samples collected from a total of 16 islands of varying sizes (328–16,648 km2). Methods We characterized parasite diversity and distribution via polymerase chain reaction (PCR) from avian (Zosterops) blood samples. Bayesian methods were used to reconstruct the parasite phylogeny. In accordance with recent molecular evidence, we treat distinct mitochondrial DNA lineages as equivalent to species in this study. Path analysis and parasite lineage accumulation curves were used to assess the confounding effect of inadequate sampling on the estimation of parasite richness. Species–area and species–distance relationships were assessed using linear regression: distance–decay relationships were assessed using Mantel tests. Results Birds and mosquito species and Plasmodium lineages exhibited significant species–area relationships. However, Plasmodium lineages showed the weakest ‘species–area’ relationship; no relationship was found for Haemoproteus lineages. Avian species richness influenced parasite lineage richness more than mosquito species richness did. Within individual avian host species, the species–area relationship of parasites showed differing patterns. Path analysis indicated that sampling effort was unlikely to have a confounding effect on parasite richness. Distance from mainland (isolation effect) showed no effect on parasite richness. Community similarity decayed significantly with distance for avifauna, mosquito fauna and Plasmodium lineages but not for Haemoproteus lineages. Main conclusions Plasmodium lineages and mosquito species fit the power‐law model with steeper slopes than found for the avian hosts. The lack of species–distance relationship in parasites suggests that other factors, such as the competence of specific vectors and habitat features, may be more important than distance. The decay in similarity with distance suggests that the sampled Plasmodium lineages and their potential hosts were not randomly distributed, but rather exhibited spatially predictable patterns. We discuss these results in the context of the effects that parasite generality may have on distribution patterns.  相似文献   

18.
The epidemiology of vector‐borne pathogens is largely determined by the host‐choice behaviour of their vectors. Here, we investigate whether a Plasmodium infection renders the host more attractive to host‐seeking mosquitoes. For this purpose, we work on a novel experimental system: the avian malaria parasite Plasmodium relictum, and its natural vector, the mosquito Culex pipiens. We provide uninfected mosquitoes with a choice between an uninfected bird and a bird undergoing either an acute or a chronic Plasmodium infection. Mosquito choice is assessed by microsatellite typing of the ingested blood. We show that chronically infected birds attract significantly more vectors than either uninfected or acutely infected birds. Our results suggest that malaria parasites manipulate the behaviour of uninfected vectors to increase their transmission. We discuss the underlying mechanisms driving this behavioural manipulation, as well as the broader implications of these effects for the epidemiology of malaria.  相似文献   

19.
Haemosporidians, a group of vector-borne parasites that include Plasmodium, infect vertebrates including birds. Although mosquitoes are crucial elements in the transmission of avian malaria parasites, little is known of their ecology as vectors. We examined the presence of Plasmodium and Haemoproteus lineages in five mosquito species belonging to the genera Culex and Ochlerotatus to test for the effect of vector species, season and host-feeding source on the transmission dynamics of these pathogens. We analyzed 166 blood-fed individually and 5,579 unfed mosquitoes (grouped in 197 pools) from a locality in southern Spain. In all, 15 Plasmodium and two Haemoproteus lineages were identified on the basis of a fragment of 478 bp of the mitochondrial cytochrome b gene. Infection prevalence of blood parasites in unfed mosquitoes varied between species (range: 0–3.2%) and seasons. The feeding source was identified in 91 mosquitoes where 78% were identified as bird. We found that i) several Plasmodium lineages are shared among different Culex species and one Plasmodium lineage is shared between Culex and Ochlerotatus genera; ii) mosquitoes harboured Haemoproteus parasites; iii) pools of unfed females of mostly ornithophilic Culex species had a higher Plasmodium prevalence than the only mammophylic Culex species studied. However, the mammophylic Ochlerotatus caspius had in pool samples the greatest Plasmodium prevalence. This relative high prevalence may be determined by inter-specific differences in vector survival, susceptibility to infection but also the possibility that this species feeds on birds more frequently than previously thought. Finally, iv) infection rate of mosquitoes varies between seasons and reaches its maximum prevalence during autumn and minimum prevalence in spring.  相似文献   

20.
A population of Common Blackbirds Turdus merula was studied to investigate the relationships between the presence of blood parasites and host morphometrics, a putative sexually selected trait (bill colour), and reproductive parameters. Haematozoa of four genera were detected and their prevalence was high. Infection was negatively associated with adult morphometrics: adults infected with Leucocytozoon were in relatively poor body condition and had shorter wings than uninfected birds. The bill colour of males infected with Plasmodium tended to be duller than that of uninfected males, and in females Haemoproteus infection was significantly positively associated with bill coloration. Haematozoan infection of females was unrelated to measured reproductive parameters, and there was no relationship between blood parasite infection and the provision of parental care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号