首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Norwegian coast is a very important winter area for king eiders (Somateria spectabilis), but their origin has been unknown. We determined spring and autumn migration routes, timing of migration and potential breeding areas of king eiders wintering in north-eastern Norway using implanted satellite transmitters. Five males and five females were equipped with transmitters in February 2008, and location data were received from six birds. All birds departed within 10 days in mid April and flew to the Pechora Sea and Kara Sea in western Russia where they staged until mid June. Subsequently, four of five birds with active transmitters (two females and two males) moved east to potential breeding locations on the Gydan and Taymyr Peninsulas. In early July, the males moved west to moult at Kolguyev Island and in the Pechora Sea. The two females departed in mid July, one probably moulting between the gulfs of the Ob and Yenisei Rivers, after which it moved to the Pechora Sea. The other female probably moulted in the eastern Taymyr, thereafter moving to Novaya Zemlya. This female returned to the north-eastern coast of Norway 1 December, while the other female returned 2 January. For the males, the transmitters stopped in December/January when they were still in the Pechora/Kolguyev area. King eiders wintering in north-eastern Norway thus originate from the western half of Arctic Russia, and the Taymyr Peninsula is probably the dividing point between the eastern and western flyways.  相似文献   

3.
Sex biases in distributions of migratory birds during the non‐breeding season are widespread; however, the proximate mechanisms contributing to broad‐scale sex‐ratio variation are not well understood. We analyzed a long‐term winter‐banding dataset in combination with spring migration data from individuals tracked by using geolocators to test three hypotheses for observed variation in sex‐ratios in wintering flocks of snow buntings Plectrophenax nivalis. We quantified relevant weather conditions in winter (temperature, snowfall and snow depth) at each banding site each year and measured body size and condition (fat scores) of individual birds (n > 5500). We also directly measured spring migration distance for 17 individuals by using light‐level geolocators. If the distribution pattern of birds in winter is related to interactions between individual body size and thermoregulation, then larger bodied birds (males) should be found in colder sites (body size hypothesis). Males may also winter closer to breeding grounds to reduce migration distance for early arrival at breeding sites (arrival timing hypothesis). Finally, males may be socially dominant over females, and thus exclude females from high‐quality wintering sites (social dominance hypothesis). We found support for the body size hypothesis, in that colder and snowier weather predicted both larger body size and higher proportions of males banded. Direct tracking revealed that males did not winter significantly closer to their breeding site, despite being slightly further north on average than females from the same breeding population. We found some evidence for social dominance, in that females tended to carry more fat than males, potentially indicating lower habitat quality for females. Global climatic warming may reduce temperature constraints on females and smaller‐bodied males, resulting in broad‐scale changes in distributional patterns. Whether this has repercussions for individual fitness, and therefore population demography, is an important area of future research.  相似文献   

4.
The migration of the great snipe Gallinago media was previously poorly known. Three tracks in 2010 suggested a remarkable migratory behaviour including long and fast overland non‐stop flights. Here we present the migration pattern of Swedish male great snipes, based on 19 individuals tracked by light‐level geolocators in four different years. About half of the birds made stopover(s) in northern Europe in early autumn. They left the breeding area 15 d earlier than those which flew directly to sub‐Sahara, suggesting two distinct autumn migration strategies. The autumn trans‐Sahara flights were on average 5500 km long, lasted 64 h, and were flown at ground speeds of 25 m s?1 (90 km h?1). The arrival in the Sahel zone of west Africa coincided with the wet season there, and the birds stayed for on average three weeks. The birds arrived at their wintering grounds around the lower stretches of the Congo River in late September and stayed for seven months. In spring the great snipes made trans‐Sahara flights of similar length and speed as in autumn, but the remaining migration through eastern Europe was notably slow. All birds returned to the breeding grounds within one week around mid‐May. The annual cycle was characterized by relaxed temporal synchronization between individuals during the autumn–winter period, with maximum variation at the arrival in the wintering area. Synchronization increased in spring, with minimum time variation at arrival in the breeding area. This suggests that arrival date in the breeding area is under strong stabilizing selection, while there is room for more flexibility in autumn and arrival to the wintering area. The details of the fast non‐stop flights remain to be elucidated, but the identification of the main stopover and wintering areas is important for future conservation work on this red‐listed bird species.  相似文献   

5.
Understanding connections between breeding, stopover and wintering grounds for long‐distance migratory birds can provide important insight into factors influencing demography and the strength of carry‐over effects among various periods of the annual cycle. Using previously described, multi‐isotope (δ13C, δ15N, δ2H) feather isoscapes for Africa, we identified the most probable wintering areas for house martins Delichon urbica breeding at Badajoz in southwestern Spain. We identified two most‐probable wintering areas differing in isotopic signature in west Africa. We found that the probability to winter in the isotopic cluster two was related to age and sex of individuals. Specifically, experienced males (i.e. two years or older) winter in the isotopic cluster two with a greater probability than experienced females, whereas first‐year females winter in the isotopic cluster two with a greater probability than first‐year males. In addition, wintering area was correlated with breeding phenology, with individuals wintering in the isotopic cluster two initiating their clutches earlier than those wintering in the isotopic cluster one. For birds wintering in the isotopic cluster two, there was no relationship between age and clutch initiation date. In contrast, young birds wintering in the isotopic cluster one initiated their clutches earlier than experienced birds wintering in this area. There was no significant correlation between wintering area and clutch size or the number of fledglings produced. We hypothesize that the relationship among social status, population density and winter habitat quality should be the most important driver of the carry‐over effect we found for this population.  相似文献   

6.
Iridescent colours produced during moult likely play an important role in pair formation in birds. We sought to quantify geographic variation in such colouration in a duck species, Eurasian teal Anas crecca, in winter (when mating occurs) to evaluate whether this variation reflects birds’ breeding origins or differential individual migration strategies in both males and females. We combined information on feather production region and individual attributes (body size, sex and age) of Eurasian teal from 82 wintering sites in France. Feather production region (moult site or natal origin) was inferred using feather deuterium values (δDf). We performed spectral measurements to evaluate speculum colour and brightness contrasts for 1052 teal collected over four years. Colouration differed strongly among wintering regions, with birds wintering in eastern France exhibiting higher colour contrast than those wintering in the west. Body size and colouration were positively related. There were no differences in cohort‐specific δDf values between separate wintering regions in France, indicating that within a winter quarter teal originated from areas across the entire breeding range. Overall, patterns of spatial variation in feather colouration were related most closely to body size which was consistent with predictions of a differential migration hypothesis, with larger and more colour‐contrasting birds wintering closer to their breeding grounds. Because moult speed is also known to affect colour production, early breeders or individuals that skipped reproduction may have invested more or earlier in their feather quality to gain potential advantages in monopolizing future mates.  相似文献   

7.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

8.
Recent climatic change is causing spring events in northern temperate regions to occur earlier in the year. As a result, migratory birds returning from tropical wintering sites may arrive too late to take full advantage of the food resources on their breeding grounds. Under these conditions, selection will favour earlier spring arrival that could be achieved by overwintering closer to the breeding grounds. However, it is unknown how daylength conditions at higher latitudes will affect the timing of life cycle stages. Here, we show in three species of Palaearctic-African migratory songbirds that a shortening of migration distance induces an advancement of springtime activities. Birds exposed to daylengths simulating migration to and wintering in southern Europe considerably advanced their spring migratory activity and testicular development. This response to the novel photoperiodic environment will enable birds wintering further north to advance spring arrival and to start breeding earlier. Thus, phenotypic flexibility in response to the photoperiod may reinforce selection for shorter migration distance if spring temperatures continue to rise.  相似文献   

9.
Determining patterns in annual movements of animals is an important component of population ecology, particularly for migratory birds where migration timing and routes, and wintering habitats have key bearing on population dynamics. From 2009 to 2011, we used light‐level geolocators to document the migratory movements of Flammulated Owls (Psiloscops flammeolus). Four males departed from breeding areas in Colorado for fall migration between ≤5 and 21 October, arrived in wintering areas in Mexico between 11 October and 3 November, departed from wintering areas from ≤6 to 21 April, and returned to Colorado between 15 and 21 May. Core wintering areas for three males were located in the Trans‐Mexican Volcanic Belt Mountains in the states of Jalisco, Michoacán, and Puebla in central and east‐central Mexico, and the core area for the other male was in the Sierra Madre Oriental Mountains in Tamaulipas. The mean distance from breeding to wintering centroids was 2057 ± 128 km (SE). During fall migration, two males took a southeastern path to eastern Mexico, and two males took a path due south to central Mexico. In contrast, during spring migration, all four males traveled north from Mexico along the Sierra Madre Oriental Mountains to the Rio Grande Valley and north through New Mexico. The first stopovers in fall and last stopovers in spring were the longest in duration for all males and located 300–400 km from breeding areas. Final spring stopovers may have allowed male Flammulated Owls to fine tune the timing of their return to high‐elevation breeding areas where late snows are not uncommon. One male tracked in both years had similar migration routes, timing, and wintering areas each year. Core wintering and final stopover areas were located primarily in coniferous forests and woodlands, particularly pine‐oak forests, suggesting that these are important habitats for Flammulated Owls throughout their annual cycle.  相似文献   

10.
Events in the life cycle of migrant birds are generally time‐constrained. Moult, together with breeding and migration, is the most energetically demanding annual cycle stages, but it is the only stage that can be scheduled at different times of the year. However, it is still not fully understood what factors determine this scheduling. We compare the timing of primary feather moult in relation to breeding and migration between two populations of Eurasian golden plover Pluvialis apricaria, the continental population breeding in Scandinavia and in N Russia that migrates to the Netherlands and southern Europe, and the Icelandic population that migrates mainly to Ireland and western UK. Moult was studied at the breeding grounds (N Sweden, N Russia, Iceland) and at stopover and wintering sites (S Sweden, the Netherlands). In both populations, primary moult overlapped with incubation and chick rearing, and females started on average 9 d later than males. Icelandic plovers overlapped moult with incubation to a larger extent and stayed in the breeding grounds until primary moult was completed. In contrast, continental birds only moulted the first 5–7 primaries at the breeding grounds and completed moult in stopover and wintering areas, such as S Sweden and the Netherlands. This overlap, although rare in birds, can be understood from an annual cycle perspective. Icelandic plovers presumably need to initiate moult early in the season to be able to complete it at the breeding grounds. The latter is not possible for continental plovers as their breeding season is much shorter due to a harsher climate. Additionally, for this population, moulting all the primaries at the stopover/wintering site is also not possible as too little time would remain to prepare for cold‐spell movements. We conclude that environmental conditions and migration strategy affect the annual scheduling of primary feather moult in the Eurasian golden plover.  相似文献   

11.
The probability of divorce in birds has been linked with age, breeding experience, reproductive output and synchrony in return. Here, we investigate the consequences of first breeding attempts in common terns for mating in the subsequent season. Nearly 20% of all first‐time breeders disappeared or skipped at least one season after recruitment. In 84 pairs, which consisted of at least one recruit and of which both partners returned to the colony, the divorce rate was 45%. We compared reproductive success, arrival dates, and asynchrony in arrival dates of pairs of the first breeding season against the second season, for both reunited and divorced pairs and males and females separately. First, in pairs of which both members came back to the colony, we found an increase of reproductive success most pronounced in males. In the second season reproductive success of divorced compared with reunited pairs was higher, as only divorced pairs significantly improved the number of fledglings, and again this relation was stronger in males. Secondly, females of reunited pairs arrived significantly earlier from the first to the second season and by far more days than their males. However, in divorced pairs former mates did not differ in the number of days they advance their arrivals. Finally, divorced males arrived on average 4 d earlier than their former mates, whereas divorced females arrived 5 d later compared with their former mates of the recruitment season. Contradictory to nearly all other divorce studies in birds so far, we found a clear fitness gain in divorced males. We suggest that the improvement in reproductive success of young males stems from a side‐effect of the birds’ quality and ability to reach the breeding site in appropriate time and earlier as potential competitors. In long‐lived bird species the heterogeneity among young individuals in the timing of arrival at the colony seems to explain why former recruit‐pairs reunite or split. For young males we suggest as best explanation of divorce that they profit from ‘pushing for an empty chair’, while females seem to profit from their choosiness and may actively decide between former and other mates.  相似文献   

12.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

13.
The effect of the timing of spring migration on reproductive success differs between the sexes. As a consequence, various sex‐specific tactics relating to the timing of migration have evolved in migratory avian groups. Various hypotheses have been proposed to explain differential migration to breeding or wintering grounds, and inter‐ and intrasexual size differences are often considered one of the proximate mechanisms. We investigated arrival patterns in the spring by individuals of each sex, sexual size dimorphism and related morphological variables, and the relationship between size variation and arrival date in five bunting species that passed through an East Asian migratory flyway stopover site in 2006–08. Males of all the study species arrived before females, and significant sexual dimorphism was observed. Several morphological characters, including total length, wing‐length and tail‐length, contributed to the size variation. Although larger males arrived earlier, there was no relationship between arrival date and size in females. Our study confirmed that East Asian buntings display a discriminated protandrous migration pattern at the stopover site as well as at the breeding grounds. This is consistent with the view that larger body size in males is favoured due to its association with early arrival to help ensure access to the best resources and hence enhanced mating success.  相似文献   

14.
Pair bonds are considered important for successful breeding in monogamous birds but their maintenance may be challenging for migratory species, as mates can be separated for months during the non‐breeding period. To investigate whether mates of monogamous migratory seabirds stay together throughout the non‐breeding period and how and when they start synchronizing their activity before breeding, we tracked seven pairs and 22 individuals of Rhinoceros Auklets Cerorhinca monocerata with geolocators and saltwater immersion loggers. Mates migrated across similar areas during the non‐breeding period but with a sustained temporal shift, putting them an average of 377 km apart and resulting in an average difference of return date at the colony of 5.6 days, with no sex biases. These values did not differ significantly from those between ‘pairs’ of randomly selected, non‐mated birds. Mates showed synchronized on‐water/in‐air at‐sea activities once both birds returned and spent the first night together at the colony. The synchronization of activities was highest on the day following the nights when both mates visited the colony, and decreased with elapsed time. Mates then left the colony together for a pre‐laying exodus of 8–9 days and males returned 2–4 days earlier than females before incubation started. Mates kept synchronizing at‐sea activity during the early part of the exodus. We interpret this as the mates staying together at sea during the pre‐laying period, increasing the males’ chances of copulation at sea. The patterns of mate association observed in Rhinoceros Auklets contrast with those of the Procellariiformes, presumably reflecting differences in the place and timing of copulation.  相似文献   

15.
Migrating long distances requires time and energy, and may interact with an individual's performance during breeding. These seasonal interactions in migratory animals are best described in populations with disjunct nonbreeding distributions. The black‐tailed godwit (Limosa limosa limosa), which breeds in agricultural grasslands in Western Europe, has such a disjunct nonbreeding distribution: The majority spend the nonbreeding season in West Africa, while a growing number winters north of the Sahara on the Iberian Peninsula. To test whether crossing the Sahara has an effect on breeding season phenology and reproductive parameters, we examined differences in the timing of arrival, breeding habitat quality, lay date, egg volume, and daily nest survival among godwits (154 females and 157 males), individually marked in a breeding area in the Netherlands for which wintering destination was known on the basis of resightings. We also examined whether individual repeatability in arrival date differed between birds wintering north or south of the Sahara. Contrary to expectation, godwits wintering south of the Sahara arrived two days earlier and initiated their clutch six days earlier than godwits wintering north of the Sahara. Arrival date was equally repeatable for both groups, and egg volume larger in birds wintering north of the Sahara. Despite these differences, we found no association between wintering location and the quality of breeding habitat or nest survival. This suggests that the crossing of an important ecological barrier and doubling of the migration distance, twice a year, do not have clear negative reproductive consequences for some long‐distance migrants.  相似文献   

16.
On their way from the wintering area to the breeding grounds in Spitsbergen, barnacle geese Branta leucopsis stage on islands off the coast of Norway. The aim of this study was to describe when the geese migrate in relation to the body stores deposited and explore questions related to the concept of optimal migration schedules and on the possible mechanisms involved. We estimated fat stores by repeated assessments of the abdominal profile index of individually marked females throughout staging. Reproductive success was derived from observations of the same individuals later in the annual cycle. Females arriving late, or with low fat stores at arrival, achieved higher fat deposition rates, probably by spending more time foraging. But they were unable to match final fat scores of birds that arrived earlier or with larger fat stores. Reproductive success was correlated with the timing of migration and individuals departing at intermediate dates achieved highest success. The exact date of peak reproductive success depended on the size of fat stores accumulated, such that low-quality birds (depositing less fat) benefited most from an early departure to the breeding grounds. Observations in the breeding colonies showed that these birds did not initiate a nest earlier but they spent a longer time in Spitsbergen before settling. The length of stay in Norway was close to the prediction derived from an optimisation model relating spring events to eventual breeding success. Poorest performing birds stayed longer than expected, perhaps depositing more fat to avoid the risk of starvation. Two possible mechanisms of the timing of migration were contrasted and it seemed that the geese departed for migration as soon as they were unable to accumulate any more fat stores.  相似文献   

17.
Breeding Ospreys were studied in southern Sweden and 13 birds were tracked by satellite telemetry on autumn migration to the African wintering grounds. This was supplemented with studies of migrating birds at Falsterbo and radar trackings from southern Sweden. Females generally left the nest site 2–3 weeks ahead of males and juveniles. Among males, failed breeders migrated significantly earlier than successful breeders. At Falsterbo, Ospreys passed in the order adult females (median 22 Aug), adult males (26 Aug) and juveniles (30 Aug). Birds tracked by radar achieved cross‐country speeds of 18–47 km/h. Most of our birds wintered in an area from The Gambia to the Ivory Coast, with one juvenile in Cameroon and one female in Mozambique. Ospreys spent on average 45 days travelling an average distance of 6742 km with no significant differences between sex and age categories. Between 0 and 44 days were used for stopovers en route. Females generally made more stopovers at northerly latitudes than males. Average speed on migration was 174 km/d, which is similar to speeds reported for other large raptors followed by satellite. Speed on travelling days was on average 257 km/d with males generally moving fastest. There was a clear tendency for lower speeds and more stopovers in Europe than during the crossing of the Sahara. Migratory activity generally took place between 8 a. m. and 5 p. m. local time and we have no indications of birds flying at night. With 9 hours travelling time the expected cross‐country speed, derived from the theory of thermal soaring flight and assuming thermal climb rates of 1–2 m/s, varies from 251 to 360 km/d, which is similar to the observed mean speed on travelling days. Even so, one male travelled 746 km/d between Sweden and Spain. Some Ospreys need a much larger fraction of travelling days than expected from theory, suggesting that they deposit fuel on the breeding grounds before departure. This is supported by a correlation between the observed fraction of days spent travelling and departure date. In late departing Ospreys, especially males and juveniles, a major part of the energy for migration is probably deposited on the breeding grounds.  相似文献   

18.
Climate change can influence many aspects of avian phenology and especially migratory shifts and changes in breeding onset receive much research interest in this context. However, changes in these different life‐cycle events in birds are often investigated separately and by means of ringing records of mixed populations. In this long‐term study on the willow warbler Phylloscopus trochilus, we investigated timing of spring and autumn migration in conjunction with timing of breeding. We made distinction among individuals with regard to age, sex, juvenile origin and migratory phase. The data set comprised 22‐yr of ringing records and two temporally separated data sets of egg‐laying dates and arrival of the breeding population close to the ringing site. The results reveal an overall advancement consistent in most, but not all, phenological events. During spring migration, early and median passage of males and females became earlier by between 4.4 to 6.3 d and median egg‐laying dates became earlier by 5 d. Male arrival advanced more, which may lead to an increase in the degree of protandry in the future. Among breeding individuals, only female arrival advanced in timing. In autumn, adults and locally hatched juvenile females did not advanced median passage, but locally hatched juvenile males appeared 4.2 d earlier. Migrating juvenile males and females advanced passage both in early and median migratory phase by between 8.4 to 10.1 d. The dissimilarities in the response between birds of different age, sex and migratory phase emphasize that environmental change may elicit intra‐specific selection pressures. The overall consistency of the phenological change in spring, autumn and egg‐laying, coupled with the unchanged number of days between median spring and autumn migration in adults, indicate that the breeding area residence has advanced seasonally but remained temporally constant.  相似文献   

19.
Understanding the departure decisions of migratory birds is critical for determining how changing climatic conditions will influence subsequent arrival times on the breeding grounds. A long‐term dataset (1972–2008) of Whooper Swan Cygnus cygnus departure dates from a wintering site in Ireland was used to assess the factors determining the timing of migration. Early and late migrating swans showed different departure patterns. Earlier wintering ground departure was more pronounced for the first 50% of the population than the last 10% of departing individuals. Earlier departure was associated with an increase in February temperatures at the wintering site for all departure phases except the date when the last individual departed. The date by which the first 50% of Swans had departed was earlier with increasing numbers of wintering Swans, suggesting that competition on the wintering grounds may further influence the timing of departure. The results also suggested that departure is mediated by the influence of spring temperature on food resources, with increased February grass growth in warmer years enabling earlier departure of migrating Swans. To determine why arrival dates in the breeding ground have altered, environmental conditions in the wintering grounds must be taken into account.  相似文献   

20.
Global climate change can cause pronounced changes in species? migratory behaviour. Numerous recent studies have demonstrated climate‐driven changes in migration distance and spring arrival date in waterbirds, but detailed studies based on long‐term records of individual recapture or re‐sighting events are scarce. Using re‐sighting data from 430 marked individuals spanning a 60‐year period (winters 1956/1957 to 2015/2016), we assessed patterns in migration distance and spring arrival date, wintering‐site fidelity and survival in the increasing central European breeding population of Greylag Geese Anser anser. We demonstrate a long‐term decrease in migration distance, changes in the wintering range caused by winter partial short‐stopping, and the earlier arrival of geese on their breeding grounds. Greylag Geese marked on central Europe moulting grounds have not been recorded wintering in Spain since 1986 or in Tunisia and Algeria since 2004. The migration distance and spring arrival of geese indicated an effect of temperature at the breeding site and values of the NAO index. Greylag Geese migrate shorter distances and arrive earlier in milder winters. We suggest that shifts in the migratory behaviour of Central European Greylag Geese are individual temperature‐dependent decisions to take advantage of wintering grounds becoming more favourable closer to their breeding grounds, allowing birds to acquire breeding territories earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号