首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to clarify the importance of C-terminal phenylalanine in angiotensin II (ANG II) molecule, agonistic activities of a C-terminal substituted peptide, isoleucine8-angiotensin II (Ile8-ANG II), were studied in comparison with those of sarcosine1-, isoleucine8-angiotensin II (Sar1-, Ile8-ANG II) and isoleucine5-angiotensin II (Ile5-ANG II) in 5 normal men. When infused iv at a rate of 600 pmol/kg X min for 30 min, Ile8-ANG II and Sar1-, Ile8-ANG II raised the blood pressure to the same extent (15/15 mmHg on the average), while the average blood pressure increase was 21/21 mmHg after an iv infusion of Ile5-ANG II at a rate of 5 pmol/kg X min for 30 min. Duration of the pressor action after the cessation of each infusion was 50-90, 90-120 and 10-25 min, respectively. In each case plasma renin activity (PRA) decreased and plasma aldosterone (PA) increased. When infused iv at a rate of 10 pmol/kg X min (maximum non-pressor dose) for 120 min, both Ile8-ANG II and Sar1-, Ile8-ANG II lowered PRA and increased PA gradually, but 100 mg oral captopril given immediately before these infusions caused no significant increase in PRA or no significant decrease in PA but again a decrease in PRA and an increase in PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In order to examine whether substrate specificity of angiotensin-converting enzyme (ACE) exists or not for N-terminal substituted angiotensin I (ANG I) in man, biological activities of sarcosine1-angiotensin I (Sar1-ANG I) and the effects of an ACE inhibitor, captopril, on the Sar1-ANG I activities were studied in 5 normal men. The following 3 experiments were done at 1 week intervals. Sarcosine1-angiotensin II (Sar1-ANG II) was infused iv at a rate of 5 pmol/kg X min from 0900 h to 0930 h in 5 normal men in a recumbent position. Blood pressure rose remarkably and the average increment was 38/31 mmHg at 30 min (p less than 0.001). Average duration of the pressor action after the cessation of the infusion (T) was 40 min for systolic and 50 min for diastolic and much longer than T of isoleucine5-angiotensin II. Plasma renin activity (PRA) decreased (p less than 0.01) and plasma aldosterone (PA) increased significantly (p less than 0.01). Sar1-ANG I was infused iv at a rate of 5 pmol/kg X min from 0900 h to 0930 h. Blood pressure rose to the same extent as in (1) (p less than 0.001). T was 40 min for both systolic and diastolic and much longer than T of ANG I in man. PRA decreased (p less than 0.01) and PA increased (p less than 0.01) significantly. Oral 100 mg captopril was given at 08:00 h and Sar1-ANG I was infused iv at a rate of 5 pmol/kg X min from 09:00 h to 09:30 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
T Kono  A Taniguchi  H Imura  F Oseko  M C Khosla 《Life sciences》1986,38(16):1515-1519
Biological activities of angiotensin II-(1-6)-hexapeptide [ANG-(1-6)] and angiotensin II-(1-7)-heptapeptide [ANG-(1-7)] were studied in 5 normal men and 3 patients with Bartter's syndrome. The angiotensins were infused iv in each subject from 0900 h to 0915 h at a rate of 21 nmol(16.8 micrograms)/kg X min and 18 nmol(16.2 micrograms)/kg X min for ANG-(1-6) and ANG-(1-7), respectively. In the normal men a significant rise in blood pressure was observed by the infusions of both peptides. Average increments of blood pressure for ANG-(1-6) were 17/14, 23/18, 22/15 and 17/14 mmHg at 2, 5, 10 and 15 min, respectively, and those for ANG-(1-7) were 19/15, 20/17, 13/13 and 15/13 mmHg at 2, 5, 10 and 15 min, respectively. The duration of pressor actions after the cessation of the infusions (T) was 10 min for ANG-(1-6) and 20 (for systolic) and 30 (for diastolic) min for ANG-(1-7). T for ANG-(1-6) was shorter than and T for ANG-(1-7) was similar to T for Ile5-angiotensin II (Ile5-ANG II) reported previously in 7 normal men 5 of whom were the same as examined in the present study. On the other hand, both peptides did not cause a rise in blood pressure in the 3 patients with Bartter's syndrome. Both angiotensins did not cause an increase in plasma aldosterone but did cause a significant decrease in plasma renin activity both in the normal men and in the patients. From these results and our previous observations of inactivity of angiotensin II-(5-8)-tetrapeptide, a pressor action of angiotensin II-(4-8)-pentapeptide, and pressor, renin-suppressing and steroidogenic actions of angiotensin II-(3-8)-hexapeptide in normal men, it is thought that ANG-(1-6) and ANG-(1-7) are bound to angiotensin II (ANG II) receptor in the peripheral arterioles and show pressor actions (less than 0.024% and less than 0.028% of Ile5-ANG II, respectively) and suppress renin mainly via short loop feedback and that the shortest biologically active ANG II molecules for pressor, renin-suppressing and steroidogenic actions are Tyr-Ile-His, Val-Tyr-Ile-His and Val-Tyr-Ile-His-Pro-Phe, respectively, in man. It is also evident that ANG-(1-6) is more rapidly metabolized than ANG-(1-7) or Ile5-ANG II in man.  相似文献   

4.
Angiotensin II and its heptapeptide fragment, Des-Asp-1-angiotensin II, produced a striking increase in aldosterone secretion in rats pretreated with dexamethasone and morphine to reduce ACTH release. 1-Sar-8-Ala-angiotensin II (10 mug/kg min-1) given simultaneously with angiotensin II (1 mug/min) blocked the aldosterone response to angiotensin II in rats pretreated to reduce ACTH release. In contrast, 1-Sar-8-Ala-angiotensin II at the same dose failed to block the steroid response to Des-Asp-1-angiotensin II (1 mug/min) but a larger dose of 50 mug/kg min-1 of the angiotensin II antagonist blocked completely both the aldosterone and the corticosterone responses to 1 mug/min of Des-Asp-1-angiotensin II. From these data it is suggested that the heptapeptide has a higher affinity for zona glomerulosa receptors than the octapeptide and that Des-Asp-1-angiotensin II mediates, at least in part, the steroidogenic response to the renin-angiotensin system in the rat. The pressor response to Des-Asp-1-angiotensin II was approximately 50% of that produced by the octapeptide in the rat, and 1-Sar-8-Ala-angiotensin II was as effective in partially blocking the pressor response to the octapeptide as in inhibiting the heptapeptide. The present observations indicate a dissociation of adrenal cortex and peripheral arteriolar receptors in their affinity for angiotensin.  相似文献   

5.
Angiotensin II (ANG II) was identified immunocytochemically and biochemically in biopsy samples of human nasal tissue. Staining for ANG II was predominantly found in structures similar to a string of pearls with consecutive short varicose areas, which is characteristic for neuronal tissue. The localization of ANG II in neurons was confirmed by positive staining of adjacent tissue sections with a specific antibody to neurofilament or doublestaining with both antibodies in one section. Likewise, ANG II-like material was also determined radioimmunologically in nasal tissue extracts. The concentrations of ANG II varied form 1.28 to 332.78 fmol/g wet tissue weight with an average concentration of 79.61+/-44.09 fmol ANG II/g wet tissue weight (mean+/-SEM, n=7). The ANG II-immunoreactive material was further characterized biochemically by HPLC on a reversed phase C(18) column in an acetonitrile and methanol gradient as Ile(5)-ANG II and ANG II metabolites such as Ile(4)-ANG III, Ile(3)-ANG II(3-8)hexapeptide and Ile(2)-ANG II(4-8)pentapeptide.  相似文献   

6.
Two analogues of angiotensin III were compared as antagonists of the pressor response to angiotensin II (ANG II) and angiotensin III (ANG III) in conscious, unrestrained rats. Dose-mean arterial pressure (MAP) response curves were obtained for ANG II and ANG III in the absence or presence of [Ile7]ANG III (1.3 x 10(-7) mol/kg) or [Sar1 Ile7]ANG III (1.2 x 10(-7) mol/kg). In the presence of [Ile7]ANG III, the dose-MAP response curves for ANG II and ANG III were significantly displaced to the right. [Ile7]ANG III behaved as a partial agonist on ANG II but not ANG III receptors. In the presence of [Sar1 Ile7]ANG III, the dose-MAP response curve for ANG III but not ANG II was significantly displaced to the right. This suggests that [Sar1 Ile7]ANG III is a selective antagonist of ANG III in the vasculature. [Ile7]ANG III, on the other hand, antagonizes both ANG II and ANG III receptors. Our results support the hypothesis of the existence of a sub-class of angiotensin receptors activated by ANG III in the vascular smooth muscle.  相似文献   

7.
In the brains of teleosts, angiotensin II (ANG II), one of the main effector peptides of the renin-angiotensin system, is implicated in various physiological functions notably body fluid and electrolyte homeostasis and cardiovascular regulation, but nothing is known regarding the potential action of ANG II and other angiotensin derivatives on ventilation. Consequently, the goal of the present study was to determine possible ventilatory and cardiovascular effects of intracerebroventricular injection of picomole doses (5-100 pmol) of trout [Asn(1)]-ANG II, [Asp(1)]-ANG II, ANG III, ANG IV, and ANG 1-7 into the third ventricle of unanesthetized trout. The central actions of these peptides were also compared with their ventilatory and cardiovascular actions when injected peripherally. Finally, we examined the presence of [Asn(1)]-ANG II, [Asp(1)]-ANG II, ANG III, and ANG IV in the brain and plasma using radioimmunoassay coupled with high-performance liquid chromatography. After intracerebroventricular injection, [Asn(1)]-ANG II and [Asp(1)]-ANG II two ANG IIs, elevated the total ventilation through a selective stimulatory action on the ventilation amplitude. However, the hyperventilatory effect of [Asn(1)]-ANG II was threefold higher than the effect of [Asp(1)]-ANG II at the 50-pmol dose. ANG III, ANG IV, and ANG 1-7 were without effect. In addition, ANG IIs and ANG III increased dorsal aortic blood pressure (P(DA)) and heart rate (HR). After intra-arterial injections, none of the ANG II peptides affected the ventilation but [Asn(1)]-ANG II, [Asp(1)]-ANG II, and ANG III elevated P(DA) (50 pmol: +80%, +58% and +48%, respectively) without significant decrease in HR. In brain tissue, comparable amounts of [Asn(1)]-ANG II and [Asp(1)]-ANG II were detected (ca. 40 fmol/mg brain tissue), but ANG III was not detected, and the amount of ANG IV was about eightfold lower than the content of the ANG IIs. In plasma, ANG IIs were also the major angiotensins (ca. 110 fmol/ml plasma), while significant but lower amounts of ANG III and ANG IV were present in plasma. In conclusion, our study suggests that the two ANG II isoforms produced within the brain may act as a neurotransmitter and/or neuromodulator to regulate the cardioventilatory functions in trout. In the periphery, two ANG IIs and their COOH-terminal peptides may act as a circulating hormone preferentially involved in cardiovascular regulations.  相似文献   

8.
When des-(Asp1, Arg2, Val3)-angiotensin II was infused iv at rates of 308–5,550 pmol/kg·min for 10–120 min into 5 normal men and 2 patients with Bartter's syndrome, no significant change was observed in blood pressure (BP), plasma renin activity (PRA) or plasma aldosterone (PA), and the lowest dose did not inhibit a captopril-induced increase in PRA in the normal men, although des-(Asp1, Arg2)-angiotensin II was reported in the same 5 normal men to cause a decrease in PRA and an increase in PA in this dose range and a rise in BP at 2,220 and 5,550 pmol/kg·min. However, an iv infusion of the pentapeptide at 9,000 pmol/kg·min for 15 min significantly raised BP in the 5 normal men but not in patients with Bartter's syndrome. BP returned to the pretreatment level 60 min after the cessation of the infusion, although the duration of the pressor actions of angiotensin II, angiotensin III and des-(Asp1, Arg2)-angiotensin II were reported to be within 5 min in man. At the same dose level none of the 7 examined subjects showed any significant change in PRA or PA. Des-(Asp1, Arg2, Val3, Tyr4)-angiotensin II was infused iv at a rate of 41,480 pmol/kg·min into one of the normal men, but it caused no significant change in BP, PRA or PA. These results suggest that the pentapeptide and probably the tetrapeptide do not possess renin-suppressing and steroidogenic actions in man but the pentapeptide does elecit a minimal pressor action with a prolonged duration.  相似文献   

9.
Abstract

Two synthetic analogues of angiotensin II (ANG II) with an extended N-terminus, (Sar)5-ANG II and (Pro)3-ANG II, have been tested in vitro for their ability to bind to ANG II receptors, to raise cytosolic free calcium concentration, (Ca++]i, and to induce a biological response in bovine adrenal zona glomerulosa cells and in cultured rat aortic smooth muscle cells. The results indicate that the two analogues did not behave identically In these two target cells for ANG II. On one hand, in the adrenal cortex, (Sar)5-ANG II and (Pro)3-ANG II were very weak agonists and (Sar)5-ANG II could even be used as an antagonist of ANG II-induced aldosterone production. On the other hand, both peptides were almost as potent as ANG II in vascular smooth muscle cells, with respect to signal messenger generation and prostacyclin synthesis. Such peptides may be useful tools in the elucidation of the differences among ANG II receptors from various target tissues.  相似文献   

10.
[1-sarcosine, 7-N-methyl-L-alanine, 8-isoleucine]-Angiotensin II and [1-sarcosine, 7-DL-nipecotic acid, 8-isoleucine]-angiotensin II were synthesized by the solid-phase method and purified by cation-exchange chromatography and high-pressure liquid chromatography. In the isolated rat uterus these analogs and less than 0.1% of the myotropic activity of angiotensin II and inhibited angiotensin II with pA2 values of 8.2 and 7.8, respectively. In the rat pressor assay (vagotomized ganglion blocked rat) these analogs had 0.9 and 2.8%, respectively, of the pressor activity of angiotensin II. The results show that the proline residue in position 7 of [Sar1,Ile8]-angiotensin II may be replaced by other secondary amino acids without disrupting interactions at angiotensin II receptors.  相似文献   

11.
Analogues of the Type I angiotensin (ANG) antagonist, [Sar1,Ile8]ANG II, in which the N-terminal dipeptide was modified were synthesized by the solid phase method and purified by reversed-phase HPLC. Antagonist potencies (pA2) of the peptides were determined on the rat isolated uterus using ANG II as the agonist. Substitution of the Arg residue occupying position 2 of [Sar1,Ile8]ANG II (pA2 8.1) by Gly, Ala, Nle, Phe, Pro or Sar reduced the antagonist potency to pA2 = 7.0, 6.8, 6.7, 6.8, 5.8 and 5.3, respectively. Deletion of the N-terminal Sar residue in these same peptides gave pA2 = 6.8, 5.7, 5.5, 5.9, 6.1 and 7.5, respectively. The characteristically long duration of action of [Sar1,Ile8] was absent for all of these analogues including (des1, Sar2, Ile8]ANG II. These findings demonstrate that the antagonist potencies of Type I angiotensin antagonists for smooth muscle receptors, and also the long duration of action, are dependent on the location of positive charges within the peptide and on the conformation of the molecule in determining favorable electrostatic interactions with the receptor. A model is proposed in which the two positively charged loci on the angiotensin molecule (N-terminus and Arg) interact with two corresponding anionic binding sites on the smooth muscle receptor. The possibility that the prolonged duration of action of [Sar1, Ile8]ANG II results from binding to a different site on the angiotensin receptor from that occupied by ANG II is discussed in relation to the present findings.  相似文献   

12.
A perifusion system technique was developed in order to determine in vitro the respective roles of ACTH and ANG II in the regulation of adrenal steroidogenesis in the lizard Lacerta vivipara. Synthetic human ACTH 1-39, administered as 20-min pulses, stimulated corticosterone (B) and aldosterone (A) release in a dose-dependent manner. The increase in corticosterone output was higher than that in aldosterone output, leading to an enhancement of the B/A ratio. Iterative stimulations with 1 nM ACTH (20-min pulses every 120 min) led to reproducible increases in corticosterone and aldosterone release. Prolonged stimulation with 1 nM ACTH (up to 240 min) caused a sustained increase in corticosteroid release, suggesting that, in the lizard, ACTH does not induce any desensitization phenomenon. The angiotensin II analogue [Sar1, Val5] ANG II also stimulated corticosterone and aldosterone release in a dose-dependent manner; the stimulatory effects of ANG II on both steroids were very similar. These results indicate that, in lizards, ACTH plays a major role in the regulation of adrenal steroidogenesis. Since ANG II stimulates the production of gluco- and mineralocorticoids, our data raise the question of the existence of two cell types synthesizing corticosterone and aldosterone, respectively, in reptiles.  相似文献   

13.
(Des-Asp1)-angiotensin I, angiotensin II and III were evaluated for pressor activities in conscious nephrectomized rats and for steroidogenic actions in rat adrenal zona glomerulosa. The pressor effect of this angiotensin nonapeptide was similar to that found with mole-equivalent doses of angiotensin III (one-third as active as angiotensin II) and was significantly attenuated by pretreatment with the 0. jararaca nonapeptide converting enzyme inhibitor. Hence, (des-Asp1)-angiotensin I is a substrate for converting enzyme in vivo, and the rapid conversion indicates that an alternate pathway for the formation of angiotensin III could exist. (Des-Asp1)-angiotensin I possessed only 0.1% of the activity of angiotensin III as a steroidogenic agent in cell suspensions of rat adrenal zona glomerulosa. Angiotensin I was a weak steroidogenic agent in vitro (1%) and was not blocked by an inhibitor of converting enzyme. Adrenal cells dispersed from the outer zone of the cortex would appear to be devoid of significant converting enzyme activity.  相似文献   

14.
Swallowed volumes in the fetus are greater than adult values (per body weight) and serve to regulate amniotic fluid volume. Central ANG II stimulates swallowing, and nonspecific ANG II receptor antagonists inhibit both spontaneous and ANG II-stimulated swallowing. In the adult rat, AT1 receptors mediate both stimulated drinking and pressor activities, while the role of AT2 receptors is controversial. As fetal brain contains increased ANG II receptors compared with the adult brain, we sought to investigate the role of both AT1 and AT2 receptors in mediating fetal swallowing and pressor activities. Five pregnant ewes with singleton fetuses (130 +/- 1 days) were prepared with fetal vascular and lateral ventricle (LV) catheters and electrocorticogram and esophageal electromyogram electrodes and received three studies over 5 days. On day 1 (ANG II), following a 2-h basal period, 1 ml artificial cerebrospinal fluid (aCSF) was injected in the LV. At time 4 h, ANG II (6.4 microg) was injected in the LV, and the fetus was monitored for a final 2 h. On day 3, AT1 receptor blocker (losartan 0.5 mg) was administered at 2 h, and ANG II plus losartan was administered at 4 h. On day 5, AT2 receptor blocker (PD-123319; 0.8 mg was administered at 2 h and ANG II plus PD-123319 at 4 h. In the ANG II study, LV injection of ANG II significantly increased fetal swallowing (0.9 +/- 0.1 to 1.4 +/- 0.1 swallows/min; P < 0.05). In the losartan study, basal fetal swallowing significantly decreased in response to blockade of AT1 receptors (0.9 +/- 0.1 to 0.4 +/- 0.1 swallows/min; P < 0.05), while central injection of ANG II in the presence of AT1 receptor antagonism did not increase fetal swallowing (0.6 +/- 0.1 swallows/min). In the PD-123319 study, basal fetal swallowing did not change in response to blockade of AT2 receptor (0.9 +/- 0.1 swallows/min), while central injection of ANG II in the presence of AT2 blockade significantly increased fetal swallowing (1.5 +/- 0.1 swallows/min; P < 0.05). ANG II caused significant pressor responses in the control and PD-123319 studies but no pressor response in the presence of AT1 blockade. These data demonstrate that in the near-term ovine fetus, AT1 receptor but not AT2 receptors accessible via CSF contribute to dipsogenic and pressor responses.  相似文献   

15.
The desensitizing potencies of angiotensin II (ANG II) analogues modified at positions 1, 2, 4, 7, and 8 have been examined in the rat isolated uterus assay by determining the time of recovery of the half-maximal concentration (EC50) response to angiotensin II after treatment of the tissues with a high dose (10(-5) M) of each analogue for 2 min. The magnitude of the desensitization effect was substituent dependent in the following manner: position 1, sarcosine (Sar) greater than Asp greater than des-Asp; position 2, Arg greater than Sar; position 4, Tyr greater than Tyr(Me) approximately Phe; position 7, 3,4-dehydroproline (Dpr) greater than Pro greater than thioproline (Tpr) greater than Sar; position 8, Ile greater than D-Trp greater than Ala greater than Phe. The "additivity" rule applied to these structure-desensitization relationships and the most potent desensitizer, requiring 3 h for reestablishment of the EC50 response, was [Sar1, Dpr7, Ile8]-ANG II. The desensitizing potencies of these analogues did not correlate with agonist or antagonist activities and demonstrated that the angiotensin-mediated tissue desensitization process has unique structural determinants. Methylation or elimination of the tyrosine hydroxyl group of strong desensitizers virtually eliminated the desensitization effect, implicating the phenoxyl moiety in the mechanism of desensitization. The initial phase of recovery of angiotensin responsiveness after desensitization by several analogues appeared to obey first-order kinetics. The results are discussed in the contexts of both one- and two-site receptor models.  相似文献   

16.
Cardiovascular responses to angiotensin II(AII) at the preoptic area (POA) were compared between normotensive Wistar Kyoto rat (WKY) and spontaneously hypertensive rat(SHR) by measuring blood pressure and heart rate under unrestrained, conscious state via a catheter implanted chronically into the abdominal aorta and by injection of drugs into POA through a chronic guide cannula. AII injected into POA at doses of 0.3 ng and 1 ng produced a dose-dependent pressor response, accompanied with a slight decrease of heart rate, in both WKY and SHR. However, in SHR, the pressor response to AII was more than 2 times greater than that in WKY and was quick in onset and lasted about 30 min. When AII in combination with [Sar1, Ile8]-angiotensin II (0.5 microgram), an AII receptor antagonist, were simultaneously administered to POA, the pressor response to AII was strongly inhibited in both WKY and SHR. The results suggest that the pressor response to AII due to its receptor stimulation at POA is markedly potentiated in SHR.  相似文献   

17.
The novel amide linked angiotensin II (ANG II) cyclic analogues: gamma, epsilon -cyclo(3, 5)-[Sar(1)-Glu(3)-Lys(5)-Ile(8)] ANG II (I) and gamma, epsilon -cyclo(3, 5)-[Sar(1)-Glu(3)-Lys(5)-Phe(8)] ANG II (II) have been designed, synthesized and bioassayed in anesthetized rabbits in order to unravel structural ring cluster characteristics important for receptor activation. Analogue I with Ile at position 8 was an inhibitor of Angiotensin II while analogue II with Phe at position 8 was found to be an agonist. Similar results were reported for cyclic compounds that have reversed the linking between positions 3 and 5. The overall results show that positions 3 and 5 do not govern the biological activity of the synthetic analogues. It also appears that the aromatic ring cluster (Tyr-His-Phe) in agonist peptides is an essential stereo-electronic feature for Angiotensin II to exert its biological activity. A non-peptide mimetic of ANG II, 1-[2'-[(N-benzyl)tetrazol-5-yl]biphenyl-4-yl]methyl]-2-hydroxymethylbenzimidazole (BZI8) has been designed and synthesized. This molecule is more rigid and much less active than AT(1) non-peptide mimetic losartan probably because it lacks to mimic the orientation of tetrazole and the pharmacophore segments of butyl chain and imidazole ring.  相似文献   

18.
The effects of intracerebroventricular administrations of three natural angiotensins, angiotensin I (ANG I 3.8 X 10-11-9.4 X10-10 mol/kg body weight), II (9.6 X 10-12-2.4 X 10-10 mol/kg body weight) and III (2.7 X 10-10 2.5 X 10-9 mol/kg body weight) on systemic blood pressure were investigated in conscious rats. Angiotensin II (ANG II), ANG I and angiotensin III (ANG III), increased blood pressure in a dose-related manner. The order of potency of angiotensins was ANG II greater than ANG I greater than ANG III. The intraventricular administration of a converting enzyme inhibitor (SQ 14225, 6.9 X10-8 mol/kg) abolished the central effect of ANG I, while an angiotensin II analogue ([Sar1-Ala8]ANG II, 1.1 X 10-8 mol/kg) administered intraventricularly inhibited the central pressor effects of these three angiotensins. These results suggest that ANG II is a main mediator of the renin-angiotensin system in the central nervous system.  相似文献   

19.
Genetically altered mice are increasingly used as experimental models. However, ANG II responses in mouse blood vessels have not been well defined. Therefore, the aim of this study was to determine the role of ANG II in regulating major blood vessels in C57/BL6J mice with isometric force measurements. Our results showed that in mouse abdominal aorta ANG II induced a concentration-dependent contraction (EC50 4.6 nM) with a maximum contraction of 75.1 +/- 4.9% at 100 nM compared with that of 60 mM K+. Similarly, femoral artery also exhibited a contractile response of 76.0 +/- 3.4% to the maximum concentration of ANG II (100 nM). In contrast, ANG II (100 nM)-induced contraction was significantly less in carotid artery (24.5 +/- 6.6%) and only minimal (3.5 +/- 0.31%) in thoracic aorta. The nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester and the AT2 antagonist PD-123319 failed to enhance ANG II-induced contractions. However, an AT1 antagonist, losartan (10 microM), completely inhibited ANG II (100 nM) response in abdominal aorta and carotid artery. An AT1 agonist, [Sar1]-ANG II (100 nM), behaved similarly to ANG II (100 nM) in abdominal aorta and carotid artery. RT-PCR analyses showed that mouse thoracic aorta has a significantly lower AT1 mRNA level than abdominal aorta. These results demonstrate that major mouse vessels exhibit differential contractions to ANG II, possibly because of varied AT1 receptor levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号