首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

2.
Park NY  Baek NI  Cha J  Lee SB  Auh JH  Park CS 《Carbohydrate research》2005,340(6):1089-1096
The gene encoding beta-glycosidase of the hyperthermophilic archaea Sulfolobus shibatae (SSG) was expressed in Escherichia coli. Recombinant SSG (referred to as rSSG hereafter) was efficiently purified, and its transglycosylation activity was tested with lactose as a donor and various sugars as acceptors. When sucrose was used as an acceptor, we found a distinct intermolecular transglycosylation product and confirmed its presence by TLC and high performance anion exchange chromatography (HPAEC). The sucrose transglycosylation product was isolated by paper chromatography, and its chemical structure was determined by 1H and 13C NMR. The sucrose transfer product was determined to be beta-D-galactopyranosyl-(1-->6)-alpha-D-glucopyranosyl-beta-d-fructofuranoside with a galactose molecule linked to sucrose via a beta-(1-->6)-glycosidic bond.  相似文献   

3.
The enzymatic access to nucleotide-activated oligosaccharides by a glycosidase-catalyzed transglycosylation reaction was explored. The nucleotide sugars UDP-GlcNAc and UDP-Glc were tested as acceptor substrates for beta-galactosidase from Bacillus circulans using lactose as donor substrate. The UDP-disaccharides Gal(beta1-4)GlcNAc(alpha1-UDP) (UDP-LacNAc) and Gal(beta1-4)Glc(alpha1-UDP) (UDP-Lac) and the UDP-trisaccharides Gal(beta1-4)Gal(beta1-4)GlcNAc(alpha1-UDP and Gal(beta1-4)Gal(beta1-4)Glc(alpha1-UDP) were formed stereo- and regioselectively. Their chemical structures were characterized by 1H and 13C NMR spectroscopy and fast atom bombardment mass spectrometry. The synthesis in frozen solution at -5 degrees C instead of 30 degrees C gave significantly higher product yields with respect to the acceptor substrates. This was due to a remarkably higher product stability in the small liquid phase of the frozen reaction mixture. Under optimized conditions, at -5 degrees C and pH 4.5 with 500 mM lactose and 100 mM UDP-GlcNAc, an overall yield of 8.2% (81.8 micromol, 62.8 mg with 100% purity) for Gal(beta1-4)GlcNAc(alpha1-UDP) and 3.6% (36.1 micromol, 35 mg with 96% purity) for Gal(beta1-4)Gal(beta1-4)GlcNAc(alpha1-UDP) was obtained. UDP-Glc as acceptor gave an overall yield of 5.0% (41.3 micromol, 32.3 mg with 93% purity) for Gal(beta1-4)Glc(alpha1-UDP) and 1.6% (13.0 micromol, 12.2 mg with 95% purity) for Gal(beta1-4)Gal(beta1-4)Glc(alpha1-UDP). The analysis of other nucleotide sugars revealed UDP-Gal, UDP-GalNAc, UDP-Xyl and dTDP-, CDP-, ADP- and GDP-Glc as further acceptor substrates for beta-galactosidase from Bacillus circulans.  相似文献   

4.
Agglutinates of native chicken erythrocytes caused by influenza virus A/Aichi/2/68 (H3N2) at 4 degrees C were potently fused and lysed at low pH (optimum pH 5.3) at 37 degrees C. Exogenous gangliosides GM3 (Sia alpha 2-3Gal beta 1-4Glc beta 1-ceramide) and GM2 (GalNAc beta 1-4(Sia alpha 2-3)-Gal beta 1-4Glc beta 1-ceramide) were integrated into the membranes of chicken asialoerythrocytes within 5-min incubation at 37 degrees C. We found that the incorporation of ganglioside GM3 containing N-acetylneuraminic acid into asialoerythrocytes restored the biological responsiveness to the virus as established by agglutination at 4 degrees C and fusion and hemolysis at 37 degrees C at pH 5.3. Biological responsiveness of GM3-NeuAc-erythrocytes to the virus was considerably higher than that of GM3-NeuGc-erythrocytes under the same experimental conditions. Treatment of the GM3-NeuAc-erythrocytes with neuraminidase again resulted in the complete abolishment of the response to the virus. Erythrocytes containing GM2-NeuAc showed no detectable biological responses toward the virus. The above results indicate that the hemagglutinin of influenza virus A/Aichi/2/68 (H3N2) recognizes the sialyloligosaccharide chain of ganglioside GM3 as its receptor which mediates the adsorption and fusion process on the virus entry into the host cells and has more preferential specificity for binding to N-acetylneuraminic acid-containing GM3 than that to N-glycolyl type in the target cell membranes.  相似文献   

5.
Carbohydrates were extracted from a sample of coati milk and the component oligosaccharides were separated and partially purified by gel filtration and preparative thin layer chromatography. Their structures were determined by 1H-NMR. Fuc alpha 1-->2Gal beta 1-->4Glc Gal alpha 1-->3Gal beta 1-->4Glc Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc Fuc alpha 1-->2Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc The two pentasaccharides are novel sugars. In addition, higher oligosaccharides, whose core units were lacto-N-neohexaose, were found in coati milk. Free lactose constituted only about one-third of the total free milk saccharides. The results are discussed in terms of comparisons with the milk sugars of bears and other species.  相似文献   

6.
Tammar wallaby (Macropus eugenii) mammary glands contain two galactosyltransferases of which the first, 4 beta GalT, is a UDP-galactose:N-acetylglucosaminyl beta 1----4-galactosyltransferase equivalent to the A protein of the lactose synthase of eutherian mammals. The second enzyme, 3 beta GalT, is a UDP-galactose:lactose beta 1----3-galactosyltransferase, not previously identified in mammary glands of any species, which catalyses the formation of Gal beta 1----3 Gal beta 1----4 Glc from lactose. The two enzyme activities, as well as the lactose synthase activity, have been characterised with respect to the effects of pH, apparent Km values, effects of bovine and tammar alpha-lactalbumins, heat sensitivity and identity of products. Studies on the substrate specificity and heat sensitivity of the 3 beta GalT activity suggest that this enzyme may catalyse the beta-galactosylation of Gal beta 1----3Gal beta 1----4Glc as well as of lactose. The activity of the 3 beta GalT, unlike that of the 4 beta GalT, changes dramatically during the course of lactation in parallel with similar changes in the carbohydrate content of tammar milk.  相似文献   

7.
We have isolated from bovine colostrum the lactose analog GalNAcbeta1-->4Glc. The enzymatic basis for its occurrence was studied by assaying the activities of GlcNAcbeta-R beta4-N-acetylgalactosaminyltransferase (beta4-GalNAcT) and GlcNAcbeta-R beta4-galactosyltransferase (beta4-GalT) in primary milk and several lactating bovine mammary gland fractions. As the beta4-GalNAcT, which appears to be tightly membrane bound, is induced by the milk protein alpha-lactalbumin (alpha-LA) to act on Glc, it is concluded that beta4-GalNAcT is responsible for the synthesis of GalNAcbeta1-->4Glc in the gland. The comparatively low level (15-20 mg/l) at which this disaccharide is produced may be due to the relatively poor interaction of beta4-GalNAcT with alpha-LA as well as to the fact that alpha-LA does not inhibit the action of the enzyme on N-acetylglucosaminides.  相似文献   

8.
A modified high pressure liquid chromatographic method using lactose (Gal beta 1----4Glc) as an exogenous acceptor has been used to characterize the sialyltransferases known to increase in the serum of colchicine-treated rats. The results show a 10-fold increase of Gal beta 1----4GlcNAc alpha 2----6 sialyltransferase (alpha 2----6 ST), whereas the Gal beta 1----3GlcNAc alpha 2----3 sialyltransferase showed only 1.6-fold increase in the serum after 17 h of colchicine treatment. The sialyltransferase activity in serum using exogenous desialylated, alpha 1-acid glycoprotein as acceptor also showed an eightfold increase. In liver homogenate and Golgi membrane, the sialyltransferase activity when assayed with desialylated alpha 1-acid glycoprotein as acceptor showed a slight decrease after 4 h, but returned to normal level after 17 h. A similar trend was seen when the two transferases were assayed with lactose as acceptor. The antiserum to rat alpha 2----6 ST inhibited the sialyltransferase activity in serum, liver, and jejunal incubation medium. Jejunal sections from rats treated with colchicine for 4 h in presence of heated serum showed a decrease of sialyltransferase, with consequent increase of the alpha 2----6 ST enzyme activity in the medium. This result suggests that intestinal tissue could be a source of increased serum enzyme activity in colchicine treatment.  相似文献   

9.
The enzyme beta-galactosidase was purified from a cold-adapted organism isolated from Antarctica. The organism was identified as a psychotrophic Pseudoalteromonas sp. The enzyme was purified with high yields by a rapid purification scheme involving extraction in an aqueous two-phase system followed by hydrophobic interaction chromatography and ultrafiltration. The beta-galactosidase was optimally active at pH 9 and at 26 degrees C when assayed with o-nitrophenyl-beta-D-galactopyranoside as substrate for 2 min. The enzyme activity was highly sensitive to temperature above 30 degrees C and was undetectable at 40 degrees C. The cations Na+, K+, Mg2+ and Mn2+ activated the enzyme while Ca2+, Hg2+, Cu2+ and Zn2+ inhibited activity. The shelf life of the pure enzyme at 4 degrees C was significantly enhanced in the presence of 0.1% (w/v) polyethyleneimine. The pure beta-galactosidase was also evaluated for lactose hydrolysis. More than 50% lactose hydrolysis was achieved in 8 h in buffer at an enzyme concentration of 1 U/ml, and was increased to 70% in the presence of 0.1% (w/v) polyethyleneimine. The extent of lactose hydrolysis was 40-50% in milk. The enzyme could be immobilized to Sepharose via different chemistries with 60-70% retention of activity. The immobilized enzyme was more stable and its ability to hydrolyze lactose was similar to that of the soluble enzyme.  相似文献   

10.
The hyperthermostable beta-glycosidases from the Archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) hydrolyse beta-glycosides of D-glucose or D-galactose with relaxed specificities pertaining to the nature of the leaving group and the glycosidic linkage. To determine how specificity is manifested under conditions of kinetically controlled transgalactosylation, the major transfer products formed during the hydrolysis of lactose by these enzymes have been identified, and their appearance and degradation have been determined in dependence of the degree of substrate conversion. CelB and SsbetaGly show a marked preference for making new beta(1-->3) and beta(1-->6) glycosidic bonds by intermolecular as well as intramolecular transfer reactions. The intramolecular galactosyl transfer of CelB, relative to glycosidic-bond cleavage and release of glucose, is about 2.2 times that of SsbetaGly and yields beta-D-Galp-(1-->6)-D-Glc and beta-D-Galp-(1-->3)-D-Glc in a molar ratio of approximately 1 : 2. The partitioning of galactosylated SsbetaGly between reaction with sugars [kNu (M-1. s-1)] and reaction with water [kwater (s-1)] is about twice that of CelB. It gives a mixture of linear beta-D-glycosides, chiefly trisaccharides at early reaction times, in which the prevailing new glycosidic bonds are beta(1-->6) and beta(1-->3) for the reactions catalysed by SsbetaGly and CelB, respectively. The accumulation of beta-D-Galp-(1-->6)-D-Glc at the end of lactose hydrolysis reflects a 3-10-fold specificity of both enzymes for the hydrolysis of beta(1-->3) over beta(1-->6) linked glucosides. Galactosyl transfer from SsbetaGly or CelB to D-glucose occurs with partitioning ratios, kNu/kwater, which are seven and > 170 times those for the reactions of the galactosylated enzymes with 1-propanol and 2-propanol, respectively. Therefore, the binding interactions with nucleophiles contribute chiefly to formation of new beta-glycosides during lactose conversion. Likewise, noncovalent interactions with the glucose leaving group govern the catalytic efficiencies for the hydrolysis of lactose by both enzymes. They are almost fully expressed in the rate-limiting first-order rate constant for the galactosyl transfer from the substrate to the enzyme and lead to a positive deviation by approximately 2.5 log10 units from structure-reactivity correlations based on the pKa of the leaving group.  相似文献   

11.
Three thermostable lactose-hydrolases, namely, two beta-glycosidases (bglA and bglB) and one beta-galactosidase (bgaA) genes were cloned from the genomic library of Thermus sp. IB-21. The bglA, bglB, and bgaA consisted of 1311 bp (436 amino acid residues), 1296 bp (431 aa), and 1938 bp (645 aa) of nucleotides with predicted molecular masses of 49,066, 48,679, and 72,714 Da, respectively. These enzymes were overexpressed in Escherichia coli BL21(DE3) using pET21b(+) vector system. The recombinant enzymes were purified to homogeneity by a heat precipitation (70 degrees C, 40 min) and a Ni2+-affinity chromatography. The molecular masses of the purified enzymes estimated by SDS-PAGE agreed with their predicted values. All the purified enzymes showed their optimal pH at around 5.0-6.0. In contrast, the temperature profiles for activity and thermostability patterns were different for each enzyme. BglB beta-glycosidase displayed the best lactose hydrolysis activity of the three enzymes without substrate inhibition up to 200 mM lactose at 70 degrees C and pH 7.0. The specific activities (U/mg) of BglA, BglB, and BgaA on 138 mM lactose at 70 degrees C and pH 7.0 were 36.8, 160.3, and 8.5, respectively.  相似文献   

12.
When fed to a beta-galactosidase-negative (lacZ(-)) Escherichia coli strain that was grown on an alternative carbon source (such as glycerol), lactose accumulated intracellularly on induction of the lactose permease. We showed that intracellular lactose was efficiently glycosylated when genes of glycosyltransferase that use lactose as acceptor were expressed. High-cell-density cultivation of lacZ(-) strains that overexpressed the beta 1,3 N acetyl glucosaminyltransferase lgtA gene of Neisseria meningitidis resulted in the synthesis of 6 g x L(-1) of the expected trisaccharide (GlcNAc beta 1-3Gal beta 1-4Glc). When the beta 1,4 galactosyltransferase lgtB gene of N. meningitidis was coexpressed with lgtA, the trisaccharide was further converted to lacto-N-neotetraose (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc) and lacto-N-neoheaxose with a yield higher than 5 g x L(-1). In a similar way, the nanA(-) E. coli strain that was devoid of NeuAc aldolase activity accumulated NeuAc on induction of the NanT permease and the lacZ(-) nanA(-) strain that overexpressed the N. meningitidis genes of the alpha2,3 sialyltransferase and of the CMP-NeuAc synthase efficiently produced sialyllactose (NeuAc alpha 2-3Gal beta 1-4Glc) from exogenous NeuAc and lactose.  相似文献   

13.
Insoluble concanavalin A-beta galactosidase complex was obtained by using jack bean extract and this complex was crosslinked with glutaraldehyde, in order to maintain the integrity of complex in the presence of its substrate or products. Concanavalin A-beta galactosidase complex retained 92% of the initial enzyme activity whereas crosslinked complex showed 88% activity. Entrapment of concanavalin A-beta galactosidase complex into calcium alginate beads provided suitability to use this preparation in reactors. Temperature- and pH-optima of the various immobilized beta galactosidase preparations were the same as its soluble counterpart. Entrapped crosslinked concanavalin A-beta galactosidase complex retained more than 50% activity after 1h exposure with 4.0 M urea at room temperature. Moreover, entrapped crosslinked concanavalin A-beta galactosidase complex retained 81 and 62% of the original enzymatic activity in the presence of 5% calcium chloride and 5% galactose, respectively. Entrapped crosslinked concanavalin A-beta galactosidase complex preparation was more superior in the continuous hydrolysis of lactose in a batch process as compared to the other entrapped preparations. This entrapped crosslinked concanavalin A-beta galactosidase complex retained 95% activity after seventh repeated use and 93% of its original activity even after 2 months storage at 4 degrees C.  相似文献   

14.
The 1,4-beta-glucan cellobiohydrolase II (CBH II) from Trichoderma reesei QM 9414 catalyses the hydrolysis of the 4-methylumbelliferyl beta-D-glycosides derived from cellotriose, cellotetraose and cellopentaose [MeUmb(Glc)n; n = 3 - 5]. The reaction has been followed by quantitative high-performance liquid chromatography. Specific activity for cellobiose removal at apparent substrate saturation were determined as (0.8 +/- 0.2) min-1 for MeUmb(Glc)3 and (9 +/- 2) min-1 for MeUmb(Glc)4. The enzyme showed a deviant specificity with MeUmb(Glc)5 as substrate. Two chromophoric products were formed simultaneously [MeUmb(Glc)3 and MeUmb(Glc)2] with turn-over numbers (17 +/- 4) min-1 and (21 +/- 6) min-1, respectively. Methylumbelliferyl beta-glucoside (MeUmbGlc) and the corresponding cellobioside [MeUmb(Glc)2] were used in equilibrium binding experiments. Both ligands yielded one binding site per molecule of Mr = 54000 upon forced flow dialysis (diafiltration). The association constants found were in fair agreement with those determined from MeUmb fluorescence quenching titrations. Quenching was total at all temperatures investigated for MeUmb(Glc)2, whereas for MeUmbGlc it increased from 80% to 100% between 2 degrees C and 20 degrees C. The association constants fitted linear van't Hoff plots in both cases. MeUmb(Glc)2 and MeUmbGlc were also used as indicator ligands to determine the association constants and thermodynamic parameters of several non-chromophoric ligands of CBH II. The binding of glucose increased the affinity for MeUmb(Glc)2 whereas it displaced MeUmbGlc from its complex. A putative binding site of the CBH II containing four subsites can be proposed. The thermodynamic data for methyl beta-D-glucopyranoside and cellobiose as ligands also point at an extended binding site.  相似文献   

15.
This paper reports on the effects of both reducing and nonreducing transgalactooligosaccharides (TOS) comprising 2 to 8 residues on the growth of Bifidobacterium adolescentis DSM 20083 and on the production of a novel beta-galactosidase (beta-Gal II). In cells grown on TOS, in addition to the lactose-degrading beta-Gal (beta-Gal I), another beta-Gal (beta-Gal II) was detected and it showed activity towards TOS but not towards lactose. beta-Gal II activity was at least 20-fold higher when cells were grown on TOS than when cells were grown on galactose, glucose, and lactose. Subsequently, the enzyme was purified from the cell extract of TOS-grown B. adolescentis by anion-exchange chromatography, adsorption chromatography, and size-exclusion chromatography. Beta-Gal II has apparent molecular masses of 350 and 89 kDa as judged by size-exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, indicating that the enzyme is active in vivo as a tetramer. Beta-Gal II had an optimal activity at pH 6 and was not active below pH 5. Its optimum temperature was 35 degrees C. The enzyme showed highest V(max) values towards galactooligosaccharides with a low degree of polymerization. This result is in agreement with the observation that during fermentation of TOS, the di- and trisaccharides were fermented first. Beta-Gal II was active towards beta-galactosyl residues that were 1-->4, 1-->6, 1-->3, and 1 <--> 1 linked, signifying its role in the metabolism of galactooligosaccharides by B. adolescentis.  相似文献   

16.
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced.  相似文献   

17.
AIMS: Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima for the hydrolysis of lactose and the production of galacto-oligosaccharides. METHODS AND RESULTS: A putative beta-galactosidase gene of Thermotoga maritima was expressed in Escherichia coli as a carboxyl terminal His-tagged recombinant enzyme. The gene encoded a 1100-amino acid protein with a calculated molecular weight of 129,501. The expressed enzyme was purified by heat treatment, His-tag affinity chromatography, and gel filtration. The optimum temperatures for beta-galactosidase activity were 85 and 80 degrees C with oNPG and lactose, respectively. The optimum pH value was 6.5 for both oNPG and lactose. In thermostability experiments, the enzyme followed first-order kinetics of thermal inactivation and its half-life times at 80 and 90 degrees C were 16 h and 16 min, respectively. Mn2+ was the most effective divalent cation for beta-galactosidase activity on both oNPG and lactose. The Km and Vmax values of the thermostable enzyme for oNPG at 80 degrees C were 0.33 mm and 79.6 micromol oNP min(-1) mg(-1). For lactose, the Km and Vmax values were dependent on substrate concentrations; 1.6 and 63.3 at lower concentrations up to 10 mm of lactose and 27.8 mm and 139 micromol glucose min(-1) mg(-1) at higher concentrations, respectively. The enzyme displayed non-Michaelis-Menten reaction kinetics with substrate activation, which was explained by simultaneous reactions of hydrolysis and transgalactosylation. CONCLUSIONS: The results suggest that the thermostable enzyme may be suitable for both the hydrolysis of lactose and the production of galacto-oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of hydrolysis and transgalactosylation performed by beta-galactosidase of hyperthermophilic bacteria.  相似文献   

18.
KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid), a sialic acid analog, has been found to be widely distributed in nature. Despite the structural similarity between KDN and Neu5Ac, alpha-ketosides of KDN are refractory to conventional sialidases. We found that the hepatopancreas of the oyster, Crassostrea virginica, contains two KDN-cleaving sialidases but is devoid of conventional sialidase. The major sialidase, KDN-sialidase, effectively cleaves alpha-ketosidically linked KDN and also slowly cleaves the alpha-ketosides of Neu5Ac. The minor sialidase, KDNase, is specific for alpha-ketosides of KDN. We were able to separate these two KDN-cleaving enzymes using hydrophobic interaction and cation-exchange chromatographies. The rate of hydrolysis of 4-methylumbelliferyl-alpha-KDN (MU-KDN) by KDN-sialidase is 30 times faster than that of MU-Neu5Ac in the presence of 0.2 M NaCl, whereas in the absence of NaCl this ratio is only 8. KDNase hydrolyzes MU-KDN over 500 times faster than MU-Neu5Ac and is not affected by NaCl. KDN-sialidase purified to electrophoretically homogeneous form was found to have a molecular mass of 25 kDa and an isoelectric point of 8.4. One of the three tryptic peptides derived from KDN-sialidase contains the consensus motif, SXDXGXTW, that has been found in all conventional sialidases. Kinetic analysis of the inhibition of the hydrolysis of MU-KDN and MU-Neu5Ac by 2, 3-dehydro-2-deoxy-KDN (KDN2-en) and 2,3-dehydro-2-deoxy-(Neu5Ac2-en) suggests that KDN-sialidase contains two separate active sites for the hydrolysis of KDN and Neu5Ac. Both KDN-sialidase and KDNase effectively hydrolyze KDN-G(M3), KDNalpha2-->3Gal beta1-->4Glc, KDNalpha2-->6Galbeta1-->4Glc, KDNalpha2-->6-N-acetylgalactosaminitol, KDNalpha2-->6(KDNalpha2-->3)N-acetylgalactosaminitol, and KDNalpha2-->6(GlcNAcbeta1-->3)N-acetylgalactosaminitol. However, only KDN-sialidase also slowly hydrolyzes G(M3), Neu5Acalpha2-->3Galbeta1-->4Glc, and Neu5Acalpha2-->6Galbeta1-->4Glc. These two KDN-cleaving sialidases should be useful for studying the structure and function of KDN-containing glycoconjugates.  相似文献   

19.
20.
A milk sample from a captive giant panda (Ailuropoda melanoleuca), obtained at 13 days postpartum, contained 7.1% protein, 1.6% carbohydrate, 10.4% lipid and 0.9% ash. The ratio of casein to whey proteins was 5.0:2.1. Sodium dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE) of the whey protein fraction showed the presence of at least two major proteins other than alpha-lactalbumin and beta-lactoglobulin. SDS-PAGE and urea-gel electrophoresis showed that alphas-casein is not a major component. The proportions of triacylglycerol, cholesterol, cholesterol esters and phospholipid were 90.5, 5.3, 0.96 and 3.1%, of the total lipid, respectively. The dominant saccharide in the panda milk was Gal(alpha1-3)Gal(beta1-4)Glc (isoglobotriose). The milk contained, in addition, lesser amounts of lactose, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc (fucosyl isoglobotriose), Neu5Ac(alpha2-3)Gal(beta1-4)Glc (3'-N-acetylneuraminyl-lactose), Neu5Ac(alpha2-6)Gal(beta1-4)Glc (6'-N-acetylneuraminyl-lactose) and Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号