首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics of cell inactivation in the presence of ethanol at 20, 22.5% and 25% (v/v), was measured by progressive sampling and viable counting, and used as an inference of the ethanol resistance status of five non-Saccharomyces strains and one strain of Saccharomyces cerevisiae. The capacity of standard inocula of the same strains to establish growth at increasing initial ethanol concentrations was employed as a comparison. The effect of various different pre-culture conditions on the ethanol resistance of the 6 strains was analysed by the cell inactivation method and by the cell growth method. Exposing cells to 25% (v/v) ethanol for 4 min enabled the differentiation of the yeasts in terms of their resistance to ethanol. The results suggest that the two methods are generally concordant and that the cell inactivation method can, thus, be used to infer ethanol resistance of yeast strains.  相似文献   

2.
The kinetics of cell inactivation in the presence of ethanol at 20, 22.5% and 25% (v/v), was measured by progressive sampling and viable counting, and used as an inference of the ethanol resistance status of five non-Saccharomyces strains and one strain of Saccharomyces cerevisiae. The capacity of standard inocula of the same strains to establish growth at increasing initial ethanol concentrations was employed as a comparison. The effect of various different pre-culture conditions on the ethanol resistance of the 6 strains was analysed by the cell inactivation method and by the cell growth method. Exposing cells to 25% (v/v) ethanol for 4 min enabled the differentiation of the yeasts in terms of their resistance to ethanol. The results suggest that the two methods are generally concordant and that the cell inactivation method can, thus, be used to infer ethanol resistance of yeast strains.  相似文献   

3.
A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.  相似文献   

4.
Immunological cross-reactivity between cell wall proteins obtained from two yeast genera (Candida tropicalis and Saccharomyces cerevisiae) is reported. Specific retention of two cell wall proteins from Saccharomyces cerevisiae by an immunoabsorbent column coupled with antibodies against phosphate binding protein 2 (PiBP2) from Candida tropicalis allowed to generate antibodies against the proteins from S. cerevisiae. These antibodies were effective in inhibiting phosphate uptake by S. cerevisiae cells. The proteins from S. cerevisiae displayed a phosphate binding activity which was inhibited in the presence of the forementioned antibodies. These results and the observation that the amount of these proteins in the shock fluid was dependent of the growth conditions (i.e., in the presence or in the absence of phosphate) support the idea that these proteins are involved in the high affinity phosphate transport system.Abbreviations Pi inorganic phosphate - PiBP2 phosphate binding protein 2 obtained from Candida tropicalis - Tris Tris(hydroxymethyl)-aminoethane - MES [2-(N-Morpholino)] ethanesulfonic acid - EDTA ethylene diamine tetraacetic acid, disoldium salt - PMSF phenylmethyl sulfonyl fluoride - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

5.
Process oscillation characterized by long oscillation period and large oscillation amplitude was observed in continuous ethanol fermentation with Saccharomyces cerevisiae under very high gravity conditions. Metabolic flux analysis was applied to the fermentation system, and the results indicated that carbon flux distributions at the metabolic notes oscillated, correspondingly, and the root reason for the process oscillation was the intracellular metabolism of yeast cells. Cell cycle analysis with the flow cytometry showed that no cell-cycle-dependent synchronization of the daughter and mother cells occurred within the duration of the oscillation, and thus different mechanism existed compared with the oscillation observed in the continuous culture of Saccharomyces cerevisiae and triggered by the synchronization of the daughter and mother cells under specific conditions. Furthermore, the overall metabolic activity of the yeast cells was examined, which was found not exactly out of phase but lag behind ethanol concentration that accumulated within the fermentation system and its inhibition on the yeast cells as well, which supported the mechanistic speculation for the process oscillation: the lag response of yeast cells to ethanol inhibition.  相似文献   

6.
It is shown that the deletion of BGL2 gene leads to increase in chitin content in the cell wall of Saccharomyces cerevisiae. A part of the additional chitin can be removed from the bgl2Δ cell wall by alkali or trypsin treatment. Chitin synthase 1 (Chs1) activity was increased by 60 % in bgl2Δ mutant. No increase in chitin synthase 3 (Chs3) activity in bgl2Δ cells was observed, while they became more sensitive to Nikkomycin Z. The chitin level in the cell walls of a strain lacking both BGL2 and CHS3 genes was higher than that in chs3Δ and lower than that in bgl2Δ strains. Together these data indicate that the deletion of BGL2 results in the accumulation and abnormal incorporation of chitin into the cell wall of S. cerevisiae, and both Chs1 and Chs3 take part in a response to BGL2 deletion in S. cerevisiae cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Ethanol, n-butanol and iso-amyl alcohol concentration caused an exponential decrease in the viability ofSaccharomyces cerevisiae cells. n-Butanol and iso-amyl alcohol, both products of alcoholic fermentations, were found to act in a synergistic manner with each other and with ethanol in causing cell death in suspensions of non-growing cultures ofSaccharomyces cerevisiae.  相似文献   

8.
The fermentation characteristics of 24 strains of Saccharomyces cerevisiae and one strain of Candida apicola, C. famata, C. guilliermondii, Hanseniospora occidentalis, Pichia subpelicullosa and Schizosaccharomyces pombe were evaluated for the production of cachaça. They were isolated from small cachaça distilleries (27), industrial cachaça distilleries (2) and one sugarcane alcohol distillery. The yeasts showed significant differences in ethanol yield, substrate conversion, efficiency, conversion factors of substrate into ethanol (Y p/s), cells (Y x/s), organic acids (Y ac/s) and glycerol (Y g/s), and maximum specific growth rate ( max). In general the S. cerevisiae strains showed better fermentation potential, with yields between 83 and 91% and max between 0.450 and 0.640 h–1, several of them being comparable with the high performance yeast used in the industrial production of ethanol, which was adopted as a reference. The non-Saccharomyces strains showed high efficiency, very low ethanol yield and very high Y ac/s and Y g/s values, except Pichia subpelliculosa, which behaved very similarly to the S. cerevisiae strains. Hierarchical Cluster Analysis and Principal Component Analysis showed the fermentation yield (or substrate conversion) as being the variable which contributed most to the separation of the strains into different groups.  相似文献   

9.
Protoplasts prepared from complementary haploid strains ofSaccharomyces cerevisiae were studied with regard to their ability of conjugating. Neither fresh protoplasts nor the growing protoplasts possessing fibrillar walls exhibited sex specific agglutination or fusion. However, they were capable of inducing sexual activation in normal cells of opposite mating type. After completing the regeneration of cell walls the protoplasts could conjugate either with each other or with cells of opposite sex. The frequency of conjugations was low, about 1%, and was largely dependent on the degree of completition of the wall during regeneration. From the results the following conclusions may be drawn: 1. The initiation of mating is dependent on the integrity of the cell wall. 2. The sex specific morphogenetic changes do not occur in wall-less protoplasts but may happen after the protoplasts have regenerated their cell walls. 3. The lysis of cell walls does not occur until the walls come into close contact. 4. The fusion of plasma membranes in sex-activated protoplasts cannot be induced by artefucial agglutination.  相似文献   

10.
Characterization of common cell surface-bound antigens inCandida albicans strains, particularly those expressed in the walls of mycelial cells might be useful in the diagnosis of systemic candidiasis. Hence, antigenic similarities among wall proteins and mannoproteins fromC. albicans clinical serotype A and B isolates, were studied using polyclonal (mPAbs) and monoclonal (MAb 4C12) antibodies raised against wall antigens from the mycelial form of a commonC. albicans serotype A laboratory strain (ATCC 26555). Zymolyase digestion of walls isolated from cells of the different strains studied grown at 37°C (germination conditions), released, in all cases, numerous protein and mannoprotein components larger than 100 kDa, along with a 33–34 kDa species. The pattern of major antigens exhibiting reactivity towards the mPAbs preparation was basically similar for all the serotype A and B isolates, though minor strain-specific bands were also observed. The immunodeterminant recognized by MAb 4C12 was found to be absent or present in very low amounts inC. albicans isolates other than the ATCC 26555 strain, yet high molecular weight species similar in size (e.g., 260 kDa) to the wall antigen against which MAb 4C12 was raised, were observed, particularly in wall digests from serotype A strains. Cell surface hydrophobicity, an apparently important virulence factor inC. albicans, of the cell population of each serotype B strain was lower than that of the corresponding serotype A counterparts, which is possibly due to the fact that the former strains exhibited a reduced ability to form mycelial filaments under the experimental conditions used.Abbreviations CSH cell surface hydrophobicity - IIF indirect immunofluorescence  相似文献   

11.
【背景】纤维素是生物转化解决能源问题的主要原料之一,其水解物中存在严重影响抑制菌株生长的糠醛,需脱毒才可应用于发酵,提高菌株耐受性是解决纤维素水解液实际生产应用的关键。【目的】酿酒酵母(Saccharomyces cerevisiae)是主要的纤维素水解液发酵工业菌株,但糠醛耐受性较低,通过分子改造获得具有高糠醛耐受性的菌株。【方法】利用新获得的产甘油假丝酵母(Candidaglycerinogenes)的相关抗逆转录因子CgSTB5、CgSEF1和CgCAS5,通过分子技术进行S.cerevisiae改造,考察其对酿酒酵母糠醛耐受性的影响,并尝试应用于未脱毒纤维素乙醇发酵。【结果】单个表达CgSTB5和CgSEF1的酿酒酵母,通过菌株点板实验表明菌株的糠醛耐受性提高25%以上,并且摇瓶发酵结果显示糠醛降解性能明显提高,生长延滞期明显缩短,S.cerevisiae W303/p414-CgSTB5的未脱毒纤维素乙醇发酵生产效率提高12.5%左右。【结论】转录因子CgSTB5和CgSEF1均能对提高酿酒酵母糠醛耐受性起到重要作用,并且有助于提高酿酒酵母菌株未脱毒纤维素乙醇发酵性能。  相似文献   

12.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

13.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeastSaccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose andS. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase fromCandida boidinii, having an optimum pH and temperature range of 4.5–5.0 and 30–50°C respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol byS. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of 42.8%.  相似文献   

14.
In industrial process, yeast cells are exposed to ethanol stress that affects the cell growth and the productivity. Thus, investigating the intracellular state of yeast cells under high ethanol concentration is important. In this study, using DNA microarray analysis, we performed comprehensive expression profiling of two strains of Saccharomyces cerevisiae, i.e., the ethanol-adapted strain that shows active growth under the ethanol stress condition and its parental strain used as the control. By comparing the expression profiles of these two strains under the ethanol stress condition, we found that the genes related to ribosomal proteins were highly up-regulated in the ethanol-adapted strain. Further, genes related to ATP synthesis in mitochondria were suggested to be important for growth under ethanol stress. We expect that the results will provide a better understanding of ethanol tolerance of yeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
《Microbiological research》2014,169(12):907-914
The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool.  相似文献   

16.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   

17.
A recently described new method for determination of killer toxin activity was used for kinetic measurenments of K1 toxin binding. The cells of the killer sensitive strain Saccharomyces cerevisiae S6 were shown to carry two classes of toxin binding sites differing widely in their half-saturation constants and maximum binding rates. The low-affinity and high-velocity binding component (K T1=2.6x109 L.U./ml, V max1=0.19 s-1) probably reflects diffusion-limited binding to cell wall receptors; the high-affinity and low-velocity component (K T2=3.2x107 L.U./ml, V max2=0.03 s-1) presumably indicates the binding of the toxin to plasma membrane receptors. Adsorption of most of the killer toxin K1 to the surface of sensitive cells occured within 1 min and was virtually complete within 5 min. The amount of toxin that saturated practically all cell receptors was about 600 lethal units (L.U.) per cell of S. cerevisiae S6.  相似文献   

18.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

19.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells. During various stresses, the yeast Saccharomyces cerevisiae induces glycerol or trehalose synthesis, but the fluctuations in gene expression and intracellular levels of proline in yeast are not yet well understood. We previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. In this study, we examined the relationships between the gene expression profiles and intracellular contents of glycerol, trehalose, and proline under stress conditions. When yeast cells were exposed to 1 M sorbitol stress, the expression of GPD1 encoding glycerol-3-phosphate dehydrogenase is induced, leading to glycerol accumulation. In contrast, in the presence of 9% ethanol, the rapid induction of TPS2 encoding trehalose-6-phosphate phosphatase resulted in trehalose accumulation. We found that intracellular proline levels did not increase immediately after addition of sorbitol or ethanol. However, the expressions of genes involved in proline synthesis and degradation did not change during exposure to these stresses. It appears that the elevated proline levels are due primarily to an increase in proline uptake from a nutrient medium caused by the induction of PUT4. These results suggest that S. cerevisiae cells do not accumulate proline in response to sorbitol or ethanol stress different from other organisms.  相似文献   

20.
Recombinant Saccharomyces cerevisiae YKU 131 (capable of expressing glucoamylase) was used to produce ethanol from sago starch. The optimum C/N ratio for ethanol production by the recombinant yeast was 7.9, where 4.7 and 10.1 g/l ethanol was produced from 20 and 40 g/l sago starch, respectively. At sago starch concentration higher than 40 g/l and C/N ratio higher than 10.4, glucoamylase production and rate of starch hydrolysis were reduced, which in turn, reduced ethanol production significantly. The theoretical yield of ethanol based on sago starch consumed in fermentation using 40 g/l was 72.6%. This yield was slightly lower than those obtained in fermentation using soluble starch such as potato and corn starch, which ranged from 80–90% as reported in the literature. However, S. cerevisiae YKU 131 could only utilize 62% of the total amount of starch added to a medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号