首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Previous studies of a group of mutants of the murine coronavirus mouse hepatitis virus (MHV)-A59, isolated from persistently infected glial cells, have shown a strong correlation between a Q159L amino acid substitution in the S1 subunit of the spike gene and a loss in the ability to induce hepatitis and demyelination. To determine if Q159L alone is sufficient to cause these altered pathogenic properties, targeted RNA recombination was used to introduce a Q159L amino acid substitution into the spike gene of MHV-A59. Recombination was carried out between the genome of a temperature-sensitive mutant of MHV-A59 (Alb4) and RNA transcribed from a plasmid (pFV1) containing the spike gene as well as downstream regions, through the 3′ end, of the MHV-A59 genome. We have selected and characterized two recombinant viruses containing Q159L. These recombinant viruses (159R36 and 159R40) replicate in the brains of C57BL/6 mice and induce encephalitis to a similar extent as wild-type MHV-A59. However, they exhibit a markedly reduced ability to replicate in the liver or produce hepatitis compared to wild-type MHV-A59. These viruses also exhibit reduced virulence and reduced demyelination. A recombinant virus containing the wild-type MHV-A59 spike gene, wtR10, behaved essentially like wild-type MHV-A59. This is the first report of the isolation of recombinant viruses containing a site-directed mutation, encoding an amino acid substitution, within the spike gene of any coronavirus. This technology will allow us to begin to map the molecular determinants of pathogenesis within the spike glycoprotein.  相似文献   

2.
3.
目的:构建猪传染性胃肠炎病毒S蛋白的细胞内表达重组乳酸乳球菌,确定其最佳表达条件,为重组乳酸菌作为口服疫苗防治猪传染性胃肠炎奠定基础。方法:根据猪传染性胃肠炎病毒纤突(S)蛋白的全基因序列及表达载体质粒的基因融合特点,设计一对引物,进行PCR,获得含有TGEV S基因4个主要抗原位点的约2000bp目的片段,将其与表达载体质粒pNZ8048进行连接,通过电转化进入宿主菌乳酸乳球菌NZ9000细胞内,在乳链菌肽(Nisin)的诱导下进行表达,确定最佳表达条件;并通过SDS-PAGE进行检测和Western-blot分析表达蛋白活性。结果:成功获得了TGEV S蛋白在乳酸乳球菌细胞内的表达并且表达的蛋白具有TGE全病毒的抗原性。确定了乳酸乳球菌表达TGEV S蛋白的最佳表达条件为在以1ng/ml的乳链杆菌肽nisin诱导下,诱导后3h,重组蛋白表达效率达最高,重组蛋白约占菌体总蛋白含量的8.7%。结论:在乳酸乳球菌细胞内表达的重组TGEV S蛋白获得了理想表达,为进一步研制开发防治TGE口服疫苗提供物质基础。  相似文献   

4.
During the life cycle of the transmissible gastroenteritis coronavirus (TGEV), two types of virus-related particles are detected in infected swine testis cells: large annular viruses and small dense viruses. We have studied the relationships between these two types of particles. Immunoelectron microscopy showed that they are closely related, since both large and small particles reacted equally with polyclonal and monoclonal antibodies specific for TGEV proteins. Monensin, a drug that selectively affects the Golgi complex, caused an accumulation of large annular viral particles in perinuclear elements of the endoplasmic reticulum-Golgi intermediate compartment. A partial reversion of the monensin blockade was obtained in both the absence and presence of cycloheximide, a drug that prevented the formation of new viral particles. After removal of monensin, the Golgi complex recovered its perinuclear location, and a decrease in the number of perinuclear large viral particles was observed. The release of small dense viral particles into secretory vesicles and the extracellular medium was also observed, as was a partial recovery of infectivity in culture supernatants. Small viral particles started to be seen between the third and the fourth Golgi cisternae of normally infected cells. All of these data strongly indicate that the large annular particles are the immature precursors of the small dense viruses, which are the infectious TGEV virions. The immature viral particles need to reach a particular location at the trans side of the Golgi stack to complete their morphological maturation.  相似文献   

5.
Coronaviruses (CoVs) have very large RNA viral genomes with a distinct genomic architecture of core and accessory open reading frames (ORFs). It is of utmost importance to understand their patterns and limits of homologous and nonhomologous recombination, because such events may affect the emergence of novel CoV strains, alter their host range, infection rate, tissue tropism pathogenicity, and their ability to escape vaccination programs. Intratypic recombination among closely related CoVs of the same subgenus has often been reported; however, the patterns and limits of genomic exchange between more distantly related CoV lineages (intertypic recombination) need further investigation. Here, we report computational/evolutionary analyses that clearly demonstrate a substantial ability for CoVs of different subgenera to recombine. Furthermore, we show that CoVs can obtain—through nonhomologous recombination—accessory ORFs from core ORFs, exchange accessory ORFs with different CoV genera, with other viruses (i.e., toroviruses, influenza C/D, reoviruses, rotaviruses, astroviruses) and even with hosts. Intriguingly, most of these radical events result from double crossovers surrounding the Spike ORF, thus highlighting both the instability and mobile nature of this genomic region. Although many such events have often occurred during the evolution of various CoVs, the genomic architecture of the relatively young SARS-CoV/SARS-CoV-2 lineage so far appears to be stable.  相似文献   

6.
采用基因重组的方法构建了含有猪传染性胃肠炎病毒S基因B和C抗原位点片段的巴斯德毕赤酵母Pichiapastoris分泌型表达载体pPIC9K-ts,经线性化后采用电穿孔法将其导入毕赤酵母GS115中,大量筛选后获得高效表达外源蛋白的毕赤酵母工程菌株GS115/pPIC9K-ts。表达蛋白经Dot-ELISA检测具有良好的抗原性。本研究为TGE的血清学检测方法的建立提供了必要的物质基础。  相似文献   

7.
We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene.  相似文献   

8.
Biophysics - In recent years, members of the Coronaviridae family have caused outbreaks of respiratory diseases (MERS, SARS, and COVID-19). At the same time, the potential of radiation-induced...  相似文献   

9.
SARS virus spike gene fra gment was expressed by Ecoli expr ession systemThe fragment enclose s major neutralization epitope of the virusThe expressed protein wa s purified and an ELISA method was set upBy using the recombinant,tw elve patients' sera were detected The recombinant SARS coronavirus s pike protein offers an efficient wa y for serological diagnosis and is useful for epidemiological survey and vaccin e development  相似文献   

10.
The difference in membrane (M) protein compositions between the transmissible gastroenteritis coronavirus (TGEV) virion and the core has been studied. The TGEV M protein adopts two topologies in the virus envelope, a Nexo-Cendo topology (with the amino terminus exposed to the virus surface and the carboxy terminus inside the virus particle) and a Nexo-Cexo topology (with both the amino and carboxy termini exposed to the virion surface). The existence of a population of M molecules adopting a Nexo-Cexo topology in the virion envelope was demonstrated by (i) immunopurification of (35)S-labeled TGEV virions using monoclonal antibodies (MAbs) specific for the M protein carboxy terminus (this immunopurification was inhibited only by deletion mutant M proteins that maintained an intact carboxy terminus), (ii) direct binding of M-specific MAbs to the virus surface, and (iii) mass spectrometry analysis of peptides released from trypsin-treated virions. Two-thirds of the total number of M protein molecules found in the virion were associated with the cores, and one-third was lost during core purification. MAbs specific for the M protein carboxy terminus were bound to native virions through the M protein in a Nexo-Cexo conformation, and these molecules were removed when the virus envelope was disrupted with NP-40 during virus core purification. All of the M protein was susceptible to N-glycosidase F treatment of the native virions, which indicates that all the M protein molecules are exposed to the virus surface. Cores purified from glycosidase-treated virions included M protein molecules that completely or partially lost the carbohydrate moiety, which strongly suggests that the M protein found in the cores was also exposed in the virus envelope and was not present exclusively in the virus interior. A TGEV virion structure integrating all the data is proposed. According to this working model, the TGEV virion consists of an internal core, made of the nucleocapsid and the carboxy terminus of the M protein, and the envelope, containing the spike (S) protein, the envelope (E) protein, and the M protein in two conformations. The two-thirds of the molecules that are in a Nexo-Cendo conformation (with their carboxy termini embedded within the virus core) interact with the internal core, and the remaining third of the molecules, whose carboxy termini are in a Nexo-Cexo conformation, are lost during virus core purification.  相似文献   

11.
The mouse hepatitis virus (MHV) spike glycoprotein, S, has been implicated as a major determinant of viral pathogenesis. In the absence of a full-length molecular clone, however, it has been difficult to address the role of individual viral genes in pathogenesis. By using targeted RNA recombination to introduce the S gene of MHV4, a highly neurovirulent strain, into the genome of MHV-A59, a mildly neurovirulent strain, we have been able to directly address the role of the S gene in neurovirulence. In cell culture, the recombinants containing the MHV4 S gene, S4R22 and S4R21, exhibited a small-plaque phenotype and replicated to low levels, similar to wild-type MHV4. Intracranial inoculation of C57BL/6 mice with S4R22 and S4R21 revealed a marked alteration in pathogenesis. Relative to wild-type control recombinant viruses (wtR13 and wtR9), containing the MHV-A59 S gene, the MHV4 S gene recombinants exhibited a dramatic increase in virulence and an increase in both viral antigen staining and inflammation in the central nervous system. There was not, however, an increase in the level of viral replication in the brain. These studies demonstrate that the MHV4 S gene alone is sufficient to confer a highly neurovirulent phenotype to a recombinant virus deriving the remainder of its genome from a mildly neurovirulent virus, MHV-A59. This definitively confirms previous findings, suggesting that the spike is a major determinant of pathogenesis.  相似文献   

12.
目的:利用巴斯德毕赤酵母表达系统表达猪传染性胃肠炎病毒(TGEV)纤突糖蛋白S。方法:根据GenBank中猪TGEV纤突糖蛋白S全基因设计一对引物,并在5'引物和3'引物中引入EcoRⅠ、NotⅠ酶切位点,2.2kb的目的基因S经PCR扩增后克隆于pBS-T载体,再将S基因经双酶切从T载体切下并与穿梭质粒pPIC9k连接,SalⅠ线性化重组穿梭质粒pPIC9k-S,电转化于毕赤酵母GS115感受态细胞,G418筛选鉴定阳性重组子,经甲醇诱导,SDS-PAGE检测诱导后上清。结果:对pPIC9k-S重组酵母表达载体的测序证实已成功克隆了猪TGEVS基因;重组酵母菌诱导表达后,SDS-PAGE检测结果显示表达产物的相对分子质量约为82×103,且S蛋白以可溶性形式分泌表达于胞外。结论:利用巴斯德毕赤酵母真核表达系统成功表达了猪传染性胃肠炎病毒(河北分离株)纤突糖蛋白S。  相似文献   

13.
14.
15.
猪传染性胃肠炎(transmissible gastroenteritis,TGE)是由猪传染性胃肠炎病毒(transmissible gas-troenteritis virus,TGEV)引起的一种急性、高度接触性传染病,以呕吐、水样腹泻、脱水和对2周龄以内仔猪高度致死率为特征[1]。猪传染性胃肠炎病毒隶属于冠状病毒科冠状病毒属,是引起仔猪病毒性腹泻的重要病原,其基因组为单股正链的有感染性不分节段的RNA,TGEV结构蛋白主要由S、N、Ms、M蛋白组成[2]。其中n基因指导合成病毒的核衣壳蛋白(N),它是一种磷酸化的蛋白,存在于病毒粒子的内部,其分子质量为47kD[3],与病毒基因组组成核衣壳;N…  相似文献   

16.
SARS冠状病毒S蛋白在昆虫细胞中的表达和纯化   总被引:3,自引:0,他引:3  
导致严重急性呼吸综合征(sevcre acute rcspiratory syndrome,SARS)的元凶是一种新型的冠状病毒(SARS coronavirus,SARS-CoV)。SARS-CoV感染入侵宿主细胞关键的一环是病毒自身的棘突蛋白(spike protein,S-protein)与细胞受体的相互作用,故而S蛋白己成为SARS研究的主要热点。  相似文献   

17.
在国内首次对犬冠状病毒大熊猫野毒株(CCVDXMV)纤突蛋白基因进行了克隆和序列测定。该基因全长4362bp,编码1453个氨基酸,N端前18个氨基酸为推测的信号肽序列,后1435个氨基酸构成成熟蛋白。与GenBank中已发表的11个CCV毒株s基因相比,s基因核苷酸序列同源性在40.2%-99.5%之间;推导的氨基酸序列同源性在15.9%-99.O%之间。DXMV株s基因变异区主要集中在该基因前1/2处,其中350.370、439.478、1718.1818三个区域碱基变异较大,而1060.1700区却十分保守。基于s全基因及其蛋白的聚类分析表明,DXMV株与K378、NVSL和USpatent株亲源关系最近。推导的DXMV株s蛋白氨基酸序列潜在的N-联糖基化位点与CCV强毒V54相同,为34个,比Insavc.1弱毒多一个;其中第566.568位糖基化位点为多数强毒拥有而弱毒没有的。另外,DXMV株S蛋白疏水性及抗原表位与其它毒株有一定的差异,这些差异对DXMV株致病性和免疫原性等影响尚待进一步的研究。  相似文献   

18.
Porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PDEV) can cause severe diarrhea in pigs. Development of effective vaccines against TGEV and PEDV is one of important prevention measures. The spike (S) protein is the surface glycoprotein of TGEV and PEDV, which can induce specific neutralization antibodies and is a candidate antigen for vaccination attempts. In this study, the open reading frames of the TGEV S1 protein and in addition of the S or S1 proteins of PEDV were inserted into the eukaryotic expression vector, pIRES, resulting in recombinant plasmids, pIRES-(TGEV-S1-PEDV-S1) and pIRES-(TGEV-S1-PEDV-S). Subsequently, 6–8 weeks old Kunming mice were inoculated with both DNA plasmids. Lymphocyte proliferation assay, virus neutralization assay, IFN-γ assay and CTL activity assay were performed. TGEV/PEDV specific antibody responses as well as kinetic changes of T lymphocyte subgroups of the immunized mice were analyzed. The results showed that the recombinant DNA plasmids increased the proliferation of T lymphocytes and the number of CD4+ and CD8+ T lymphocyte subgroups. In addition, the DNA vaccines induced a high level of IFN-γ in the immunized mice. The specific CTL activity in the pIRES-(TGEV-S1-PEDV-S) group became significant at 42 days post-immunization. At 35 days post-immunization, the recombinant DNA plasmids bearing full-length S genes of TGEV and PEDV stimulated higher levels of specific antibodies and neutralizing antibodies in immunized mice.  相似文献   

19.
犬冠状病毒大熊猫株纤突蛋白全基因的克隆与序列分析   总被引:2,自引:0,他引:2  
在国内首次对犬冠状病毒大熊猫野毒株(CCV DXMV)纤突蛋白基因进行了克隆和序列测定.该基因全长4362bp,编码1453个氨基酸,N端前18个氨基酸为推测的信号肽序列,后1435个氨基酸构成成熟蛋白.与GenBank中已发表的11个CCV毒株S基因相比,S基因核苷酸序列同源性在40.2%~99.5%之间;推导的氨基酸序列同源性在15.9%~99.0%之间.DXMV株S基因变异区主要集中在该基因前1/2处,其中350-370、439-478、1718-1818三个区域碱基变异较大,而1060-1700区却十分保守.基于S全基因及其蛋白的聚类分析表明,DXMV株与K378、NVSL和US patent株亲源关系最近.推导的DXMV株S蛋白氨基酸序列潜在的N-联糖基化位点与CCV强毒V54相同,为34个,比Insavc-1弱毒多一个;其中第566-568位糖基化位点为多数强毒拥有而弱毒没有的.另外,DXMV株S蛋白疏水性及抗原表位与其它毒株有一定的差异,这些差异对DXMV株致病性和免疫原性等影响尚待进一步的研究.  相似文献   

20.
Respiratory viruses exert a heavy toll of morbidity and mortality worldwide. Despite this burden there are few specific treatments available for respiratory virus infections. Since many viruses utilize host cell enzymatic machinery such as protein kinases for replication, we determined whether pharmacological inhibition of kinases could, in principle, be used as a broad antiviral strategy for common human respiratory virus infections. A panel of green fluorescent protein (GFP)-expressing recombinant respiratory viruses, including an isolate of H1N1 influenza virus (H1N1/Weiss/43), was used to represent a broad range of virus families responsible for common respiratory infections (Adenoviridae, Paramyxoviridae, Picornaviridae, and Orthomyxoviridae). Kinase inhibitors were screened in a high-throughput assay that detected virus infection in human airway epithelial cells (1HAEo-) using a fluorescent plate reader. Inhibition of p38 mitogen-activated protein kinase (MAPK) signaling was able to significantly inhibit replication by all viruses tested. Therefore, the pathways involved in virus-mediated p38 and extracellular signal-regulated kinase (ERK) MAPK activation were investigated using bronchial epithelial cells and primary fibroblasts derived from MyD88 knockout mouse lungs. Influenza virus, which activated p38 MAPK to approximately 10-fold-greater levels than did respiratory syncytial virus (RSV) in 1HAEo- cells, was internalized about 8-fold faster and more completely than RSV. We show for the first time that p38 MAPK is a determinant of virus infection that is dependent upon MyD88 expression and Toll-like receptor 4 (TLR4) ligation. Imaging of virus-TLR4 interactions showed significant clustering of TLR4 at the site of virus-cell interaction, triggering phosphorylation of downstream targets of p38 MAPK, suggesting the need for a signaling receptor to activate virus internalization.Respiratory virus infections cause considerable morbidity and mortality worldwide; it was recently reported that hospitalizations due to respiratory syncytial virus (RSV) exceed 2 million per year in the Unites States alone (16). An H1N1 swine influenza pandemic took place during the 2009-2010 winter season (14), and there is the lingering threat of an H5N1 avian influenza pandemic, with mortality due to direct bird-to-human H5N1 infection in hospitalized patients between 30 and 100% (3). The severe acute respiratory syndrome (SARS)-associated coronavirus, isolated in 2003, resulted in devastating respiratory tract infections with few treatment options (40). For most common respiratory viruses, treatment is symptomatic, and for pathogens such as influenza viruses for which specific treatments are available, oseltamivir (Tamiflu)- and amantidine-resistant strains are emerging and being transmitted globally (33).All functions within a cell are triggered and regulated by cell signaling cues. Since viruses are obligate intracellular parasites, they rely upon cell signaling to regulate all processes within the cell that drive virus replication. In this study we investigated the effects of kinase inhibitors as a therapeutic strategy and to investigate the roles played by some kinases during virus replication. The extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPKs) have been shown by us and others to play important roles during virus replication in vitro (19, 20, 26, 30, 42), and we have recently reported that inhibition of p38 MAPK activation is an effective and novel antiviral strategy in vivo (29). The significance of p38 MAPK activity in vivo is such that inadvertent and coincident activation of this kinase by some pharmaceutical agents enhances virus replication (29). Antiviral strategies may exist whereby inhibition of host cell kinases may stem the spread and replication of numerous different viral species. Such broad antiviral strategies would permit administration of kinase inhibitors to patients suspected of having respiratory viral infection, and to health care workers or inhabitants within the locale of a viral outbreak, prior to the availability of results from laboratory diagnostic testing.The activation of p38 MAPK by pattern recognition receptors (PRRs) has been studied in the context of the antiviral immune response (reviewed in reference 22). We report here that viruses usurp these responses for the benefit of virus replication through activation of p38 MAPK, mediated by a PRR (Toll-like receptor 4 [TLR4]) and MyD88, providing the basis for a broad-spectrum antiviral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号