首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Azurocidin belongs to the serprocidin family, but it is devoid of proteolytic activity due to a substitution of His and Ser residues in the catalytic triad. The aim of this study was to reconstitute the active site of azurocidin by site-directed mutagenesis, analyze its processing and restored proteolytic activity. Azurocidin expressed in Sf9 insect cells possessing the reconstituted His41-Asp89-Ser175 triad exhibited significant proteolytic activity toward casein with a pH optimum of approximately 8-9, but a reconstitution of only one active site amino acid did not result in proteolytically active protein. Enzymatically active recombinant azurocidin caused cleavage of the C-terminal fusion tag with the primary cleavage site after lysine at Lys-Leu and after alanine at Ala-Ala, and the secondary cleavage site after arginine at Arg-Gln, as well as with low efficiency caused cleavage of insulin chain B after leucine at Leu-Tyr and Leu-Cys, and after alanine at Ala-Leu. We demonstrate that cleavage of the azurocidin C-terminal tripeptide is not necessary for its enzymatic activity. The first isoleucine present in mature azurocidin can be replaced by similar amino acids, such as leucine or valine, but its substitution by histidine or arginine decreases proteolytic activity.  相似文献   

2.
Isolates of Burkholderia cenocepacia express a putative haem-binding protein (molecular mass 97 kDa) that displays intrinsic peroxidase activity. Its role has been re-evaluated, and we now show that it is a bifunctional catalase-peroxidase, with activity against tetramethylbenzidine (TMB), o-dianisidine, pyrogallol, and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS). Both peroxidase and catalase activities are optimal at pH 5.5-6.0. The gene encoding this enzyme was cloned and expressed in Escherichia coli. We have named it katG because of its similarity to other katGs, including that from Burkholderia pseudomallei. It is substantially similar to a previously described catalase-peroxidase of B. cenocepacia (katA). MS analysis indicated that the initial katG translation product may be post-translationally modified in B. cenocepacia to give rise to the mature 97-kDa catalase-peroxidase.  相似文献   

3.
A 33-kDa alkaline serine protease secreted by Penicillium citrinum strain 52-5 is shown to be an allergenic agent in this fungus. The protein, designated Pen c 1, was purified by sequential DEAE-Sepharose and carboxymethyl (CM)-Sepharose chromatographies. Pen c 1 has a molecular mass of 33 kDa and a pI of 7.1. The caseinolytic enzyme activity of this protein was studied. The protein binds to serum IgE from patients allergic to Penicillium citrinum. The cDNA encoding Pen c 1 is 1420 bp in length and contains an open reading frame for a 397-amino-acid polypeptide. Pen c 1 codes for a larger precursor containing a signal peptide, a propeptide and the 33-kDa mature protein. Sequence comparison revealed that Pen c 1 possesses several features in common with the alkaline serine proteases of the subtilisin family. The essential Asp, His, and Ser residues that make up the catalytic triad of serine proteases are well conserved. Northern blots demonstrated that mRNAs transcribed from this gene are present at early stages of culture. The allergen encoded by Pen c 1 gene was expressed in Escherichia coli as a fusion protein bearing an N-terminal histidine-affinity tag. The protein, purified by affinity chromatography with a yield of 130 mg of pure protein per liter of culture, was able to bind to both a monoclonal anti-Pen c 1 antibody and IgE from the serum of patients allergic to Penicillium. Recombinant Pen c 1 can therefore be expressed in E. coli in large quantities and should prove useful as a standardized specific allergen for immuno-diagnosis of atopic disorders. In addition, full caseinolytic enzyme activity could be generated in the purified recombinant protein by sulfonation and renaturation, followed by removal of the affinity tag, indicating that the refolded protein can assume the same conformation as the native protein.  相似文献   

4.
Serine proteases (granzymes) contained within the cytoplasmic granules of cytotoxic T cells and natural killer cells play a variety of roles including the induction of target cell apoptosis, breakdown of extracellular matrix proteins and induction of cytokine secretion by bystander leukocytes. Different granzymes display proteolytic specificities that mimic the activities of trypsin or chymotrypsin, or may cleave substrates at acidic ("Asp-ase") or at long unbranched amino acids such as Met ("Met-ase"). Here, we report that recombinant granzyme H has chymotrypsin-like (chymase) activity, the first report of a human granzyme with this proteolytic specificity. Recombinant 32-kDa granzyme H expressed in the baculovirus vector pBacPAK8 was secreted from Sf21 cells and recovered by Ni-affinity chromatography, using a poly-His tag encoded at the predicted carboxyl terminus of full-length granzyme H cDNA. The granzyme H efficiently cleaved Suc-Phe-Leu-Phe-SBzl (v = 185 nM/s at [S] = 0.217 mM) and also hydrolyzed Boc-Ala-Ala-X-SBzl (X = Phe, Tyr, Met, Nle, or Nva) with slower rates but had little tryptase or Asp-ase activity. Enzymatic activity was inhibited completely by 0.1 mM 3,4-dichloroisocoumarin and 84% by 1.0 mM phenylmethylsulfonyl fluoride. Fluoresceinated granzyme H was internalized in a temperature-dependent manner by Jurkat cells into endosome-like vesicles, suggesting that it can bind to cell surface receptors similar to those that bind granzyme B. This suggests a hitherto unsuspected intracellular function for granzyme H.  相似文献   

5.
To examine, the proteolytic activities of various truncated derivatives of the potato virus Y (PVY) 50-kDa protease, the derivatives were expressed in Escherichia coli in polyprotein forms fused with coat protein (CP). For the intermolecular cleavage reaction, the truncated proteases were expressed together with the substrate protein containing the polymerase-CP junction. The activity was evaluated by the amount of the mature CP released from the precursor by the intra- and intermolecular cleavage occurring in E. coli. By this experiment, we identified the moiety responsible for the proteolytic activity of the 50-kDa protease to be a 26-kDa polypeptide mapped to the C-terminal half of the protease. Introduction of His234→Tyr, Asp269→Asn, or Cys339→Gly substitution in the putative catalytic triad of the protease abolished its activity. However, the mutated protease with Cys339→Ser replacement retained a reduced proteolytic activity.  相似文献   

6.
The extracellular serine endopeptidase GluSE (EC 3.4.21.19) is considered to be one of the virulence factors of Staphylococcus epidermidis. The present study investigated maturation processing of native GluSE and that heterologously expressed in Escherichia coli. In addition to the 28-kDa mature protease, small amounts of proenzymes with molecular masses of 32, 30, and 29 kDa were identified in the extracellular and cell wall-associated fractions. We defined the pre (M1-A27)- and pro (K28-S66)-segments, and found that processing at the E32-S33 and D48-I49 bonds was responsible for production of the 30- and 29-kDa intermediates, respectively. The full-length form of C-terminally His-tagged GluSE was purified as three proenzymes equivalent to the native ones. These molecules possessing an entire or a part of the pro-segment were proteolytically latent and converted to a mature 28-kDa form by thermolysin cleavage at the S66-V67 bond. Mutation of the essential amino acid S235 suggested auto-proteolytic production of the 30- and 29-kDa intermediates. Furthermore, an undecapeptide (I56-S66) of the truncated pro-segment not only functions as an inhibitor of the protease but also facilitates thermolysin processing. These findings could offer clues to the molecular mechanism involved in the regulation of proteolytic activity of pathogenic proteases secreted from S. epidermidis.  相似文献   

7.
Manganese lipoxygenase is secreted by the fungus Gaeumannomyces graminis. We expressed the enzyme in Pichia pastoris, which secreted approximately 30 mg Mn-lipoxygenase/L culture medium in fermentor. The recombinant lipoxygenase was N- and O-glycosylated (80-100 kDa), contained approximately 1 mol Mn/mol protein, and had similar kinetic properties (K(m) approximately 7.1 microM alpha-linolenic acid and V(max) 18 nmol/min/microg) as the native Mn-lipoxygenase. Mn-lipoxygenase could be quantitatively converted, presumably by secreted Pichia proteases, to a smaller protein (approximately 67 kDa) with retention of lipoxygenase activity (K(m) approximately 6.4 microM alpha-linolenic acid and V(max) approximately 12 nmol/min/microg). Putative manganese ligands were investigated by site-directed mutagenesis. The iron ligands of soybean lipoxygenase-1 are two His residues in the sequence HWLNTH, one His residue and a distant Asn residue in the sequence HAAVNFGQ, and the C-terminal Ile residue. The homologous sequences of Mn-lipoxygenase are H274VLFH278 and H462HVMN466QGS, respectively, and the C-terminal amino acid is Val-602. The His274Gln, His278Glu, His462Glu, and the Val-602 deletion mutants of Mn-lipoxygenase were inactive, and had lost >95% of the manganese content. His-463, Asn-466, and Gln-467 did not appear to be critical for Mn-lipoxygenase activity, as His463Gln, Asn466Gln, Asn466Leu, and Gln467Asn mutants metabolized alpha-linolenic acid to 11- and 13-hydroperoxylinolenic acids. We conclude that His-274, His-278, His-462, and Val-602 likely coordinate manganese.  相似文献   

8.
According to the cDNA sequence of anti-neuroexcitation peptide of scorpion Buthus martensii Karsch, the putative mature anti-neuroexcitation peptide (ANEP) encoding DNA fragment was obtained by a PCR method, then was cloned into expression plasmid pET28a, fused with His tag at its 3' end. When expressed in E. coli BL21 (DE3), the expression of recombinant ANEP was 15% of total cellular proteins, while most recombinant ANEP products existed in the form of insoluble inclusion bodies. Coexpression of molecular chaperones or protein disulfide isomerase could not improve its solubility. The recombinant ANEP in the cell lysate was purified to homogeneity by metal chelating affinity chromatography and Superdex 30 chromatography. In bioassay with convulsive mice model induced by thiosemicarbazide, recombinant ANEP could apparently delay the convulsion seizure of model animals by 18% and showed anti-neuroexcitatory activity.  相似文献   

9.
Prostaglandin H synthase-1 and -2 (PGHS-1 and PGHS-2, EC 1.14.99.1) are membrane associated glycoproteins that catalyze the first two steps in prostaglandin synthesis. As the enzymes play an important regulatory role in several physiological and pathophysiological processes, recombinant PGHS isoforms are widely used in biomedical research. In the present study, we expressed human PGHS-2 (hPGHS-2) with and without a six histidine sequence tag (His(6) tag) near the amino- or carboxy-terminus of the protein in the Pichia pastoris (P. pastoris) expression system using native or yeast signal sequences. The recombinant His(6) tagged hPGHS-2 was purified using Ni-affinity and anion exchange chromatography, whereas the purification of the C-terminally His(6) tagged hPGHS-2 was more efficient. K(m), k(cat) and IC(50) values were determined to characterize the protein. The data obtained indicate that both the N- and C-terminally His(6) tagged hPGHS-2 are functional and the catalytic properties of the recombinant protein and the enzyme produced in other expression systems are comparable. As the yeast culture is easy to handle, the P. pastoris system could serve as an alternative to the most commonly used baculovirus-insect cell expression system for the production of the recombinant PGHS-2.  相似文献   

10.
Tryptases are trypsin-like serine proteases whose expression is restricted to cells of hematopoietic origin, notably mast cells. gamma-Tryptase, a recently described member of the family also known as transmembrane tryptase (TMT), is a membrane-bound serine protease found in the secretory granules or on the surface of degranulated mast cells. The 321 amino acid protein contains an 18 amino acid propeptide linked to the catalytic domain (cd), followed by a single-span transmembrane domain. gamma-Tryptase is distinguished from other human mast cell tryptases by the presence of two unique cysteine residues, Cys(26) and Cys(145), that are predicted to form an intra-molecular disulfide bond linking the propeptide to the catalytic domain to form the mature, membrane-anchored two-chain enzyme. We expressed gamma-tryptase as either a soluble, single-chain enzyme with a C-terminal His tag (cd gamma-tryptase) or as a soluble pseudozymogen activated by enterokinase cleavage to form a two-chain protein with an N-terminal His tag (tc gamma-tryptase). Both recombinant proteins were expressed at high levels in Pichia pastoris and purified by affinity chromatography. The two forms of gamma-tryptase exhibit comparable kinetic parameters, indicating the propeptide does not contribute significantly to the substrate affinity or activity of the protease. Substrate and inhibitor library screening indicate that gamma-tryptase possesses a substrate preference and inhibitor profile distinct from that of beta-tryptase. Although the role of gamma-tryptase in mast cell function is unknown, our results suggest that it is likely to be distinct from that of beta-tryptase.  相似文献   

11.
In this work, a reliable protocol was designed to rapidly express and purify a microbial chymotrypsin(ogen) as a useful alternative to using animal proteases. The cDNA encoding for chymotrypsinogen from the deuteromycete Metarhizium anisopliae (chy1) was overexpressed in an Origami2(DE3) E. coli strain deficient in thioredoxin reductase and glutathione reductase activities, thus possibly allowing disulfide exchange. By using a quick purification protocol, in which the hexahistidine tag was added at the C-terminal end of the protease, the recombinant CHY1 protein could be purified in a single step on an Ni-NTA column as a mixture of 19.5- and 15-kDa mature active forms and did not require further activation/maturation steps. This expression and purification procedure offers an easier and faster means of producing recombinant CHY1 chymotrypsin than that previously described for Pichia pastoris. The kinetic properties could be characterized and CHY1 chymotrypsin was demonstrated to efficiently catalyze N-acetylated L-phenylalanine and L-tyrosine methyl ester hydrolysis.  相似文献   

12.
Gamma-glutamyltranspeptidase (gammaGT), a member of the N-terminal nucleophile hydrolase superfamily, initiates extracellular glutathione reclamation by cleaving the gamma-glutamyl amide bond of the tripeptide. This protein is translated as an inactive proenzyme that undergoes autoprocessing to become an active enzyme. The resultant N terminus of the cleaved proenzyme serves as a nucleophile in amide bond hydrolysis. Helicobacter pylori gamma-glutamyltranspeptidase (HpGT) was selected as a model system to study the mechanistic details of autoprocessing and amide bond hydrolysis. In contrast to previously reported gammaGT, large quantities of HpGT were expressed solubly in the inactive precursor form. The 60-kDa proenzyme was kinetically competent to form the mature 40- and 20-kDa subunits and exhibited maximal autoprocessing activity at neutral pH. The activated enzyme hydrolyzed the gamma-glutamyl amide bond of several substrates with comparable rates, but exhibited limited transpeptidase activity relative to mammalian gammaGT. As with autoprocessing, maximal enzymatic activity was observed at neutral pH, with hydrolysis of the acyl-enzyme intermediate as the rate-limiting step. Coexpression of the 20- and 40-kDa subunits of HpGT uncoupled autoprocessing from enzymatic activity and resulted in a fully active heterotetramer with kinetic constants similar to those of the wild-type enzyme. The specific contributions of a conserved threonine residue (Thr380) to autoprocessing and hydrolase activities were examined by mutagenesis using both the standard and coexpression systems. The results of these studies indicate that the gamma-methyl group of Thr380 orients the hydroxyl group of this conserved residue, which is required for both the processing and hydrolase reactions.  相似文献   

13.
Three cysteine residues are located in the pro region of the transforming growth factor beta 1 (TGF-beta 1) precursor at amino acid positions 33, 223, and 225. Previous studies (Gentry, L. E., Lioubin, M. N., Purchio, A. F., and Marquardt, H. (1988) Mol. Cell. Biol. 8, 4162-4168) with purified recombinant TGF-beta 1 (rTGF-beta 1) precursor produced by Chinese hamster ovary (CHO) cells revealed that Cys-33 can form a disulfide bond with at least 1 cysteine residue in mature TGF-beta 1, contributing to the formation of a 90-110-kDa protein. We now show that Cys-223 and Cys-225 form interchain disulfide bonds. Site-directed mutagenesis was used to change these Cys codons to Ser codons, and mutant constructs were transfected into COS cells. Analysis of recombinant proteins by immunoblotting showed that by substituting Cys-33 the 90-110-kDa protein is not formed, and thus, more mature dimer (24 kDa) is obtained, corresponding to a 3- to 5-fold increase in biological activity. Substitution of Cys-223 and/or Cys-225 resulted in near wild-type levels of mature TGF-beta 1. Furthermore, cells transfected with plasmid coding for Ser at positions 223 and 225 expressed only monomeric precursor proteins and released bioactive TGF-beta 1 that did not require acid activation, suggesting that dimerization of the precursor pro region may be necessary for latency.  相似文献   

14.
Somatostatin is a 14-amino-acid peptide hormone that is proteolytically excised from its precursor, prosomatostatin, by the action of a paired-basic-specific protease. Yeast (Saccharomyces cerevisiae Mat alpha) synthesizes an analogous peptide hormone precursor, pro-alpha-factor, which is proteolytically processed by at least two separate proteases, the products of the KEX2 and STE13 genes, to generate the mature bioactive peptide. Expression in yeast of recombinant DNAs encoding hybrids between the proregion of alpha-factor and somatostatin results in proteolytic processing of the chimeric precursors and secretion of mature somatostatin. To determine if the chimeras were processed by the same enzymes that cleave endogenous pro-alpha-factor, the hybrid DNAs were introduced into kex2 and ste13 mutants, and the secreted proteins were analyzed. Expression of the pro-alpha-factor-somatostatin hybrids in kex2 mutant yeast resulted in secretion of a high molecular weight hyperglycosylated precursor. No mature somatostatin was secreted, and there was no proteolytic cleavage at the Lys-Arg processing site. Similarly, in ste13 yeast, only somatostatin molecules containing the (Glu-Ala)3 spacer peptide at the amino terminus were secreted. Our results demonstrate that in yeast processing mutants, the behavior of the chimeric precursors with respect to proteolytic processing was exactly as that of endogenous pro-alpha-factor. We conclude that the same enzymes that generate mature alpha-factor proteolytically process hybrid precursors. This suggests that structural domains of the proregion rather than the mature peptide are recognized by the processing proteases.  相似文献   

15.
When compared with mammalian IgG, chicken IgY is advantageous in terms of cross-reactivity. In this study, two plasmids were constructed for expression of recombinant chicken IgY derived from a chicken hybridoma. The first was for expression of the light (L) chain, and the other was for the heavy (H) chain with a histidine (His) tag at the carboxy-terminal. After transfection of recombinant chicken IgY gene into Chinese hamster ovary cells, a transfectant designated HF33 that secreted the specific antibody was selected. HF33 cells produced recombinant IgY with His tag at 10-15 microg/10(6) cells/24 h. On Western blotting analysis, the recombinant IgY was detected as one band for the H chain and two bands for the L chain. The recombinant IgY was successfully purified in a one-step procedure using a nickel-affinity resin. These results indicate that the present recombinant chicken IgY is useful for further applications.  相似文献   

16.
Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi.   总被引:4,自引:0,他引:4  
We have previously demonstrated that the extracellular neutral metalloprotease (Npr) of Streptomyces cacaoi is synthesized as a 60-kDa preproenzyme (P60), then processed to the 35-kDa mature form (P35) (Chang, P. C., Kuo, T.-C., Tsugita, A., and Lee, Y.-H. W. (1990) Gene (Amst.) 88, 87-95). In this study, we investigated the active site and the mechanism involved in the maturation of the protease. Site-specific mutations at the putative zinc-binding ligands and active site of Npr at His202, Glu203, His206, and Glu240 led to complete abolishment of Npr activity and concomitant accumulation of a 57-kDa inactive protein (P57) which was secreted. Sequence analysis of the NH2 terminus indicated that P57 was derived from P60 after removal of the signal peptide and represented the proenzyme form of Npr (pro-Npr). Analysis of the zinc content of purified mutant P57 proteins revealed a dramatic loss of zinc atom as compared with the wild-type P35 protein. In vitro with the aid of exogenous active Npr, the mutant P57 protein could be converted to the mature inactive P35 with an identical NH2-terminal sequence and a molecular mass the same as that of the wild-type P35. From these studies, we conclude that these highly conserved residues (His202, Glu203, His206, and Glu240) are indispensable for zinc binding and protease activity, as well as processing of Npr. In addition, we have clearly demonstrated that maturation of Npr occurs extracellularly via an autocatalytic cleavage of the pro-Npr propeptide. This is the first report of such a maturation mechanism for an extracellular protease in streptomycetes which can serve as a model for further studies on the mechanism of secretion and processing of proteases from Gram-positive bacteria.  相似文献   

17.
The enzyme cholesterol lecithin acyl transferase (LCAT) shares the Ser/Asp-Glu/His triad with lipases, esterases and proteases, but the low level of sequence homology between LCAT and these enzymes did not allow for the LCAT fold to be identified yet. We, therefore, relied upon structural homology calculations using threading methods based on alignment of the sequence against a library of solved three-dimensional protein structures, for prediction of the LCAT fold. We propose that LCAT, like lipases, belongs to the alpha/beta hydrolase fold family, and that the central domain of LCAT consists of seven conserved parallel beta-strands connected by four alpha-helices and separated by loops. We used the conserved features of this protein fold for the prediction of functional domains in LCAT, and carried out site-directed mutagenesis for the localization of the active site residues. The wild-type enzyme and mutants were expressed in Cos-1 cells. LCAT mass was measured by ELISA, and enzymatic activity was measured on recombinant HDL, on LDL and on a monomeric substrate. We identified D345 and H377 as the catalytic residues of LCAT, together with F103 and L182 as the oxyanion hole residues. In analogy with lipases, we further propose that a potential "lid" domain at residues 50-74 of LCAT might be involved in the enzyme-substrate interaction. Molecular modeling of human LCAT was carried out using human pancreatic and Candida antarctica lipases as templates. The three-dimensional model proposed here is compatible with the position of natural mutants for either LCAT deficiency or Fish-eye disease. It enables moreover prediction of the LCAT domains involved in the interaction with the phospholipid and cholesterol substrates.  相似文献   

18.
Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1β secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS) is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1β secretion and pyroptosis. Moreover, IL-1β secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS). We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1β secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.  相似文献   

19.
S Ayora  P E Lindgren    F Gtz 《Journal of bacteriology》1994,176(11):3218-3223
Two extracellular proteases from Staphylococcus hyicus subsp. hyicus, ShpI and ShpII, have been characterized. ShpI is a neutral metalloprotease with broad substrate specificity; the gene has been cloned and sequenced. ShpII, characterized here, is mainly produced in the late logarithmic growth phase in contrast to ShpI, which is mainly produced in the late stationary growth phase. ShpII was purified from culture medium of S. hyicus by ammonium sulfate precipitation and DEAE-Sepharose chromatography. The molecular mass, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 34 kDa. The temperature optimum of ShpII was 55 degrees C, and the pH optimum was 7.4. ShpII, a neutral metalloprotease, was strongly inhibited by zinc and calcium chelators. The amino-terminal sequence of the active enzyme was similar to the corresponding region of a Staphylococcus epidermidis metalloprotease. The substrate specificity of ShpII was similar to that of thermolysin-like proteases, with the exception that ShpII also recognized aromatic amino acids. We demonstrated in vitro that ShpII, but not ShpI, cleaved the 86-kDa S. hyicus subsp. hyicus prolipase between Thr-245 and Val-246 to generate the mature 46-kDa lipase. Results of additional in vivo experiments supported the model that ShpII is necessary for the extracellular processing and maturation of S. hyicus subsp. hyicus lipase.  相似文献   

20.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when (125)I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号